Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility

Foods Pub Date : 2024-06-13 DOI:10.3390/foods13121856
M. Sărăcilă, A. Untea, Alexandra-Gabriela Oancea, I. Varzaru, P. A. Vlaicu
{"title":"Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility","authors":"M. Sărăcilă, A. Untea, Alexandra-Gabriela Oancea, I. Varzaru, P. A. Vlaicu","doi":"10.3390/foods13121856","DOIUrl":null,"url":null,"abstract":"The study aims to compare the nutrient composition, antioxidant potential, and polyphenol bioaccessibility of the fruit, leaves, and pomace of black chokeberry. Phytochemical characterization, antioxidant activity, and the effect of in vitro gastrointestinal digestion on the individual phenolic compounds of fruit, leaves, and pomace of black chokeberry were assessed. Results showed that leaves had a higher content of polyphenols (61.06 mg GAE/g dw), flavonoids (8.47 mg QE/g), and tocopherols (1172.20 mg/kg) than fruit (27.99 mg GAE/g dw polyphenols, 5.23 mg QE/g flavonoids, 38.48 mg/kg tocopherols) and pomace (22.94 mg GAE/g dw polyphenols, 1.89 mg QE/g flavonoids and 157.19 mg/kg tocopherols), with superior in vitro antioxidant activity. Chlorogenic acids were the dominant phenolic compounds in black chokeberry undigested samples (2.713 mg/g in fruit, 17.954 mg/g in leaves, and 1.415 mg/g in pomace) but are poorly absorbed (bioaccessibility index in intestinal phase of 28.84% for fruit, 8.81% for leaves, and 31.90% for pomace). Hydroxybenzoic acids were highly stable in leaves and fruit during simulated digestion and had high bioaccessibility. In conclusion, residues from black chokeberry processing are also valuable sources of bioactive compounds, but the pomace had higher polyphenol bioaccessibility than leaves and might be a promising supplement for the food industry.","PeriodicalId":502667,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foods13121856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study aims to compare the nutrient composition, antioxidant potential, and polyphenol bioaccessibility of the fruit, leaves, and pomace of black chokeberry. Phytochemical characterization, antioxidant activity, and the effect of in vitro gastrointestinal digestion on the individual phenolic compounds of fruit, leaves, and pomace of black chokeberry were assessed. Results showed that leaves had a higher content of polyphenols (61.06 mg GAE/g dw), flavonoids (8.47 mg QE/g), and tocopherols (1172.20 mg/kg) than fruit (27.99 mg GAE/g dw polyphenols, 5.23 mg QE/g flavonoids, 38.48 mg/kg tocopherols) and pomace (22.94 mg GAE/g dw polyphenols, 1.89 mg QE/g flavonoids and 157.19 mg/kg tocopherols), with superior in vitro antioxidant activity. Chlorogenic acids were the dominant phenolic compounds in black chokeberry undigested samples (2.713 mg/g in fruit, 17.954 mg/g in leaves, and 1.415 mg/g in pomace) but are poorly absorbed (bioaccessibility index in intestinal phase of 28.84% for fruit, 8.81% for leaves, and 31.90% for pomace). Hydroxybenzoic acids were highly stable in leaves and fruit during simulated digestion and had high bioaccessibility. In conclusion, residues from black chokeberry processing are also valuable sources of bioactive compounds, but the pomace had higher polyphenol bioaccessibility than leaves and might be a promising supplement for the food industry.
黑刺李(Aronia melanocarpa L.)果实、叶片和果渣的植物化学成分、抗氧化潜力和多酚生物利用率的比较分析
本研究旨在比较黑刺李果实、叶片和果渣的营养成分、抗氧化潜力和多酚生物可及性。研究评估了黑刺李果实、叶片和果渣的植物化学特征、抗氧化活性以及体外胃肠消化对单个酚类化合物的影响。结果表明,叶片的多酚(61.06 毫克 GAE/g 干重)、类黄酮(8.47 毫克 QE/g)和生育酚(1172.20 毫克/千克)含量高于果实(27.99 毫克 GAE/g 干重多酚、5.23 毫克 QE/克黄酮类化合物、38.48 毫克/千克生育酚)和果渣(22.94 毫克 GAE/克干多酚、1.89 毫克 QE/克黄酮类化合物和 157.19 毫克/千克生育酚)的体外抗氧化活性更高。绿原酸是黑刺李未消化样本中最主要的酚类化合物(果实中为 2.713 毫克/克,叶片中为 17.954 毫克/克,果渣中为 1.415 毫克/克),但吸收率很低(果实在肠道阶段的生物可及性指数为 28.84%,叶片为 8.81%,果渣为 31.90%)。在模拟消化过程中,羟基苯甲酸在叶片和果实中的稳定性很高,生物利用率也很高。总之,黑刺李加工过程中产生的残留物也是生物活性化合物的宝贵来源,但果渣的多酚生物可利用性比叶片高,可能是食品工业中一种很有前景的补充剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信