Ultimate drift ratio prediction of steel plate shear wall systems: a machine learning approach

Muhammed Gürbüz, İ. Kazaz
{"title":"Ultimate drift ratio prediction of steel plate shear wall systems: a machine learning approach","authors":"Muhammed Gürbüz, İ. Kazaz","doi":"10.20528/cjsmec.2024.02.001","DOIUrl":null,"url":null,"abstract":"Predicting the ultimate drift ratio of steel plate shear wall (SPSW) systems is important for ensuring the structural integrity and performance of these systems under lateral loads. In this study, machine learning models are developed for predicting the ultimate drift ratio based on various design parameters using data from previous research on SPSW systems. These design parameters include the panel aspect ratio, column flexibility parameter, axial load ratio, web plate thickness and stiffness of horizontal and vertical boundary elements. A range of machine learning models is considered, including Random Forest, Lasso, Gradient Boosting, XGBoost, Adaboost, Artificial Neural Network and a stacked regressor. The models are trained and evaluated using data from 292 different SPSW models, and their performance is compared based on the R-squared value, root mean squared error (RMSE), and evaluation time. The results of this study demonstrate the effectiveness of machine learning techniques for predicting the ultimate drift ratio of SPSW systems. The results of this study show that machine learning techniques effectively predict the ultimate drift ratio of SPSW systems. Among the models considered, the ANN model achieved the highest R2 value, with a value of 0.94.","PeriodicalId":488266,"journal":{"name":"Challenge journal of structural mechanics","volume":"48 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenge journal of structural mechanics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.20528/cjsmec.2024.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the ultimate drift ratio of steel plate shear wall (SPSW) systems is important for ensuring the structural integrity and performance of these systems under lateral loads. In this study, machine learning models are developed for predicting the ultimate drift ratio based on various design parameters using data from previous research on SPSW systems. These design parameters include the panel aspect ratio, column flexibility parameter, axial load ratio, web plate thickness and stiffness of horizontal and vertical boundary elements. A range of machine learning models is considered, including Random Forest, Lasso, Gradient Boosting, XGBoost, Adaboost, Artificial Neural Network and a stacked regressor. The models are trained and evaluated using data from 292 different SPSW models, and their performance is compared based on the R-squared value, root mean squared error (RMSE), and evaluation time. The results of this study demonstrate the effectiveness of machine learning techniques for predicting the ultimate drift ratio of SPSW systems. The results of this study show that machine learning techniques effectively predict the ultimate drift ratio of SPSW systems. Among the models considered, the ANN model achieved the highest R2 value, with a value of 0.94.
钢板剪力墙系统的极限漂移率预测:一种机器学习方法
预测钢板剪力墙(SPSW)系统的极限漂移率对于确保这些系统在横向荷载作用下的结构完整性和性能非常重要。在本研究中,利用以往对钢板剪力墙系统的研究数据,开发了基于各种设计参数的机器学习模型,用于预测极限漂移率。这些设计参数包括面板长宽比、支柱柔性参数、轴向载荷比、腹板厚度以及水平和垂直边界元素的刚度。我们考虑了一系列机器学习模型,包括随机森林、Lasso、梯度提升、XGBoost、Adaboost、人工神经网络和堆叠回归器。使用来自 292 个不同 SPSW 模型的数据对这些模型进行了训练和评估,并根据 R 平方值、均方根误差 (RMSE) 和评估时间对它们的性能进行了比较。研究结果证明了机器学习技术在预测 SPSW 系统极限漂移率方面的有效性。研究结果表明,机器学习技术能有效预测 SPSW 系统的极限漂移率。在所考虑的模型中,ANN 模型的 R2 值最高,达到 0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信