Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive \(\scriptstyle N\)-tuples of operators in Q and Q* ideals of compact operators

IF 1.2 3区 数学 Q1 MATHEMATICS
Danko R. Jocić, Zora Lj. Golubović, Mihailo Krstić, Stevan Milašinović
{"title":"Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive \\(\\scriptstyle N\\)-tuples of operators in Q and Q* ideals of compact operators","authors":"Danko R. Jocić,&nbsp;Zora Lj. Golubović,&nbsp;Mihailo Krstić,&nbsp;Stevan Milašinović","doi":"10.1007/s43034-024-00364-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Phi ,\\Psi \\)</span> be symmetrically norming (s.n.) functions, <img> and <span>\\({{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A\\;\\!,B}X\\;\\!{\\mathop {=}\\limits ^{\\tiny {\\text {def}}}}\\;\\!{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]({\\Delta _{\\scriptscriptstyle A\\;\\!,B}})X\\;\\!{\\mathop {=}\\limits ^{\\tiny {\\text {def}}}}\\;\\!\\int _{{{\\mathbb {R}}}_+}\\!e^{\\!-tA}Xe^{\\!-tB}\\;\\!d\\mu (t)\\)</span> denotes the Laplace transformer generated by the generalized derivation <img> where <span>\\(\\mu \\)</span> is a Borel probability measure on <img> If both pairs <img> consist of mutually commuting accretive operators, such that both <span>\\(C\\;\\!-A\\)</span> and <span>\\(D-B\\)</span> are accretive and <img> for some <img>, then <span>\\({{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A^{\\;\\!*}\\!\\!,A}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C^*\\!\\!,C}^{}\\;\\!(I)\\;\\!\\geqslant \\;\\!0,{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle B\\;\\!,B^*}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle D\\;\\!,D^*}^{}\\;\\!(I)\\;\\!\\geqslant \\;\\!0\\)</span> and </p><div><div><span>$$\\begin{aligned}&amp;\\;\\!\\bigl \\vert {\\bigl \\vert {\\!\\sqrt{C^*\\!\\;\\!+\\!C\\!-A^*\\!\\;\\!-\\!A}\\bigl ({{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A\\;\\!,B}X-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C\\;\\!,D}X}\\bigr )\\!\\sqrt{D\\!+\\!\\;\\!D^*\\!-\\!B-\\!B^*}\\;\\!}\\bigr \\vert }\\bigr \\vert _\\Psi \\\\&amp;\\leqslant \\;\\!\\Bigl \\vert \\Bigl \\vert {\\textstyle \\sqrt{{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A^{\\;\\!*}\\!\\!,A}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C^*\\!\\!,C}^{}\\;\\!(I)}\\;\\!({AX\\!+\\!XB-CX\\!-\\!XD})}\\Bigr .\\Bigr .\\\\&amp;\\times \\Bigl .\\Bigl .{\\!\\sqrt{{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle B\\;\\!,B^*}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle D\\;\\!,D^*}^{}\\;\\!(I)}}\\Bigr \\vert \\Bigr \\vert _\\Psi , \\end{aligned}$$</span></div></div><p>holds under any of the following conditions: (a) if <img> (b) if <img> for some <span>\\(p\\geqslant 2,{ L^{\\;\\!2}\\;\\!(\\;\\!{{{\\mathbb {R}}}_+}\\;\\!,\\mu )}\\)</span> is separable and at least one of pairs (<i>A</i>, <i>C</i>) or (<i>B</i>, <i>D</i>) consists of normal operators, (c) if both pairs (<i>A</i>, <i>C</i>) and (<i>B</i>, <i>D</i>) consist of normal operators. Above, <span>\\({\\Phi ^{^(\\;\\!\\!^{p}\\;\\!\\!^)}}\\!\\)</span> denotes (the degree) <i>p</i>-modified s.n. function <span>\\(\\Phi \\)</span> and <span>\\({\\Phi ^{{^(\\;\\!\\!^{p}\\;\\!\\!^)}^{_*}}}\\!\\!\\)</span> is the dual s.n. function for <span>\\({\\Phi ^{^(\\;\\!\\!^{p}\\;\\!\\!^)}}\\!.\\)</span> Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00364-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Phi ,\Psi \) be symmetrically norming (s.n.) functions, and \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A\;\!,B}X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!{{{{\mathscr {L}}}}}\;\![\mu \;\!]({\Delta _{\scriptscriptstyle A\;\!,B}})X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!\int _{{{\mathbb {R}}}_+}\!e^{\!-tA}Xe^{\!-tB}\;\!d\mu (t)\) denotes the Laplace transformer generated by the generalized derivation where \(\mu \) is a Borel probability measure on If both pairs consist of mutually commuting accretive operators, such that both \(C\;\!-A\) and \(D-B\) are accretive and for some , then \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A^{\;\!*}\!\!,A}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)\;\!\geqslant \;\!0,{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle D\;\!,D^*}^{}\;\!(I)\;\!\geqslant \;\!0\) and

$$\begin{aligned}&\;\!\bigl \vert {\bigl \vert {\!\sqrt{C^*\!\;\!+\!C\!-A^*\!\;\!-\!A}\bigl ({{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A\;\!,B}X-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle C\;\!,D}X}\bigr )\!\sqrt{D\!+\!\;\!D^*\!-\!B-\!B^*}\;\!}\bigr \vert }\bigr \vert _\Psi \\&\leqslant \;\!\Bigl \vert \Bigl \vert {\textstyle \sqrt{{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A^{\;\!*}\!\!,A}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)}\;\!({AX\!+\!XB-CX\!-\!XD})}\Bigr .\Bigr .\\&\times \Bigl .\Bigl .{\!\sqrt{{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle D\;\!,D^*}^{}\;\!(I)}}\Bigr \vert \Bigr \vert _\Psi , \end{aligned}$$

holds under any of the following conditions: (a) if (b) if for some \(p\geqslant 2,{ L^{\;\!2}\;\!(\;\!{{{\mathbb {R}}}_+}\;\!,\mu )}\) is separable and at least one of pairs (AC) or (BD) consists of normal operators, (c) if both pairs (AC) and (BD) consist of normal operators. Above, \({\Phi ^{^(\;\!\!^{p}\;\!\!^)}}\!\) denotes (the degree) p-modified s.n. function \(\Phi \) and \({\Phi ^{{^(\;\!\!^{p}\;\!\!^)}^{_*}}}\!\!\) is the dual s.n. function for \({\Phi ^{^(\;\!\!^{p}\;\!\!^)}}\!.\) Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.

Abstract Image

由Q和Q*理想中紧凑算子的增量$\scriptstyle N$$算子元组生成的拉普拉斯变换器迭代扰动的规范不等式
讓 \(\Phi ,\Psi \)是對稱規範(s.n.)函數,並且 \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _\{scriptscriptstyle A\;\!,B}X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!{{{{\mathscr {L}}}}}\;\![\mu\;\!]({\Delta _{\scriptscriptstyle A\;\!,B}})X\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!\int_{{/{mathbb{R}}}_+}(e^{/{-tA}Xe^{/{-tB}}\;\!d\mu (t))表示由广义推导产生的拉普拉斯变换器,其中\(\mu\)是一个Borel概率度量,如果这两对都由相互换向的增量算子组成,那么\(C\;\.-A)和\(C\;\!-A)和(D-B)都是相加的,并且对于某个 ,那么({{{{mathscr {L}}}}}\;\![\mu \!]){\scriptscriptstyle A^\{;\!*}\!\!,A}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)\;\!geqslant \;\!0,{{{{\mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu\;\!0)和 $$begin{aligned}&;\;bigl\vert {\bigl\vert {!\sqrt{C^*\;+\;C!-A^*\;\;-A}({{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{scriptscriptstyle A\;\!,B}X-{{{{\mathscr {L}}}}}\;\![(\mu)\;(\!)]\Delta _{\scriptscriptstyle C\;\!,D}X}\bigr )\sqrt{D!+!\;\!D^*\!-!B-!B^*}\;\!}\bigr \vert }\bigr \vert _\Psi \&\leqslant\;\!|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||(I)-{{{{\mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)}\;\!({AX\!+\!XB-CX\!-\!XD})}\Bigr .\Bigr .\\(I)-{{{{mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptscriptstyle D\;\!,D^*}^{}\;\!(I)}}\Bigr vert \Bigr vert _\Psi , \end{aligned}$$holds under any of the following conditions: (a) if (b) if for some \(p\geqslant 2,{ L^{\;\!2}\;\!(\;\!{{\mathbb {R}}_+}}\;\!(A,C)或(B,D)中至少有一个由正则算子组成,(c)如果(A,C)和(B,D)都由正则算子组成。以上,\({\Phi ^{^(\;\!!!^{p}\;\!!^)}}\({\Phi ^{^(\;\;\!\是({\Phi ^{^(\;\!!!^{p}\!!!^)}^{_*}}的对偶s.n.函数。此外,上述不等式还被推广到拉普拉斯变换器的迭代扰动,并给出了 Q 准则的替代不等式。这些不等式还概括了之前得到的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信