Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive \(\scriptstyle N\)-tuples of operators in Q and Q* ideals of compact operators
Danko R. Jocić, Zora Lj. Golubović, Mihailo Krstić, Stevan Milašinović
{"title":"Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive \\(\\scriptstyle N\\)-tuples of operators in Q and Q* ideals of compact operators","authors":"Danko R. Jocić, Zora Lj. Golubović, Mihailo Krstić, Stevan Milašinović","doi":"10.1007/s43034-024-00364-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Phi ,\\Psi \\)</span> be symmetrically norming (s.n.) functions, <img> and <span>\\({{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A\\;\\!,B}X\\;\\!{\\mathop {=}\\limits ^{\\tiny {\\text {def}}}}\\;\\!{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]({\\Delta _{\\scriptscriptstyle A\\;\\!,B}})X\\;\\!{\\mathop {=}\\limits ^{\\tiny {\\text {def}}}}\\;\\!\\int _{{{\\mathbb {R}}}_+}\\!e^{\\!-tA}Xe^{\\!-tB}\\;\\!d\\mu (t)\\)</span> denotes the Laplace transformer generated by the generalized derivation <img> where <span>\\(\\mu \\)</span> is a Borel probability measure on <img> If both pairs <img> consist of mutually commuting accretive operators, such that both <span>\\(C\\;\\!-A\\)</span> and <span>\\(D-B\\)</span> are accretive and <img> for some <img>, then <span>\\({{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A^{\\;\\!*}\\!\\!,A}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C^*\\!\\!,C}^{}\\;\\!(I)\\;\\!\\geqslant \\;\\!0,{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle B\\;\\!,B^*}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle D\\;\\!,D^*}^{}\\;\\!(I)\\;\\!\\geqslant \\;\\!0\\)</span> and </p><div><div><span>$$\\begin{aligned}&\\;\\!\\bigl \\vert {\\bigl \\vert {\\!\\sqrt{C^*\\!\\;\\!+\\!C\\!-A^*\\!\\;\\!-\\!A}\\bigl ({{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A\\;\\!,B}X-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C\\;\\!,D}X}\\bigr )\\!\\sqrt{D\\!+\\!\\;\\!D^*\\!-\\!B-\\!B^*}\\;\\!}\\bigr \\vert }\\bigr \\vert _\\Psi \\\\&\\leqslant \\;\\!\\Bigl \\vert \\Bigl \\vert {\\textstyle \\sqrt{{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A^{\\;\\!*}\\!\\!,A}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C^*\\!\\!,C}^{}\\;\\!(I)}\\;\\!({AX\\!+\\!XB-CX\\!-\\!XD})}\\Bigr .\\Bigr .\\\\&\\times \\Bigl .\\Bigl .{\\!\\sqrt{{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle B\\;\\!,B^*}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle D\\;\\!,D^*}^{}\\;\\!(I)}}\\Bigr \\vert \\Bigr \\vert _\\Psi , \\end{aligned}$$</span></div></div><p>holds under any of the following conditions: (a) if <img> (b) if <img> for some <span>\\(p\\geqslant 2,{ L^{\\;\\!2}\\;\\!(\\;\\!{{{\\mathbb {R}}}_+}\\;\\!,\\mu )}\\)</span> is separable and at least one of pairs (<i>A</i>, <i>C</i>) or (<i>B</i>, <i>D</i>) consists of normal operators, (c) if both pairs (<i>A</i>, <i>C</i>) and (<i>B</i>, <i>D</i>) consist of normal operators. Above, <span>\\({\\Phi ^{^(\\;\\!\\!^{p}\\;\\!\\!^)}}\\!\\)</span> denotes (the degree) <i>p</i>-modified s.n. function <span>\\(\\Phi \\)</span> and <span>\\({\\Phi ^{{^(\\;\\!\\!^{p}\\;\\!\\!^)}^{_*}}}\\!\\!\\)</span> is the dual s.n. function for <span>\\({\\Phi ^{^(\\;\\!\\!^{p}\\;\\!\\!^)}}\\!.\\)</span> Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00364-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\Phi ,\Psi \) be symmetrically norming (s.n.) functions, and \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A\;\!,B}X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!{{{{\mathscr {L}}}}}\;\![\mu \;\!]({\Delta _{\scriptscriptstyle A\;\!,B}})X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!\int _{{{\mathbb {R}}}_+}\!e^{\!-tA}Xe^{\!-tB}\;\!d\mu (t)\) denotes the Laplace transformer generated by the generalized derivation where \(\mu \) is a Borel probability measure on If both pairs consist of mutually commuting accretive operators, such that both \(C\;\!-A\) and \(D-B\) are accretive and for some , then \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A^{\;\!*}\!\!,A}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)\;\!\geqslant \;\!0,{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle D\;\!,D^*}^{}\;\!(I)\;\!\geqslant \;\!0\) and
holds under any of the following conditions: (a) if (b) if for some \(p\geqslant 2,{ L^{\;\!2}\;\!(\;\!{{{\mathbb {R}}}_+}\;\!,\mu )}\) is separable and at least one of pairs (A, C) or (B, D) consists of normal operators, (c) if both pairs (A, C) and (B, D) consist of normal operators. Above, \({\Phi ^{^(\;\!\!^{p}\;\!\!^)}}\!\) denotes (the degree) p-modified s.n. function \(\Phi \) and \({\Phi ^{{^(\;\!\!^{p}\;\!\!^)}^{_*}}}\!\!\) is the dual s.n. function for \({\Phi ^{^(\;\!\!^{p}\;\!\!^)}}\!.\) Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.