Radar Signatures Associated with Quasi-Linear Convective System Mesovortices

Charles M. Kuster, Keith D. Sherburn, V. Mahale, Terry J. Schuur, Olivia F. McCauley, Jason S. Schaumann
{"title":"Radar Signatures Associated with Quasi-Linear Convective System Mesovortices","authors":"Charles M. Kuster, Keith D. Sherburn, V. Mahale, Terry J. Schuur, Olivia F. McCauley, Jason S. Schaumann","doi":"10.1175/waf-d-23-0144.1","DOIUrl":null,"url":null,"abstract":"\nRecent operationally driven research has generated a framework, known as the three-ingredients method and mesovortex warning system, that can help forecasters anticipate mesovortex development and issue warnings within quasi-linear convective systems (QLCSs). However, dual-polarization radar data has not yet been incorporated into this framework. Therefore, several dual- and single-polarization radar signatures associated with QLCS mesovortices were analyzed to determine if they could provide additional information about mesovortex development and intensity. An analysis of 167 mesovortices showed that 1) KDP drops precede ~95% of mesovortices and provide an initial indication of where a mesovortex may develop, 2) midlevel KDP cores are a potentially useful precursor signature because they precede a majority of mesovortices and have higher magnitudes for mesovortices that produce wind damage or tornadoes, 3) low-level KDP cores and areas of enhanced spectrum width have higher magnitudes for mesovortices that produce wind damage or tornadoes, but tend to develop at about the same time as the mesovortex, which makes them more useful as diagnostic than as predictive signatures, and 4) as range from the radar increases, the radar signatures become less useful in anticipating mesovortex intensity but can still be used to anticipate mesovortex development or build confidence in mesovortex existence.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0144.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent operationally driven research has generated a framework, known as the three-ingredients method and mesovortex warning system, that can help forecasters anticipate mesovortex development and issue warnings within quasi-linear convective systems (QLCSs). However, dual-polarization radar data has not yet been incorporated into this framework. Therefore, several dual- and single-polarization radar signatures associated with QLCS mesovortices were analyzed to determine if they could provide additional information about mesovortex development and intensity. An analysis of 167 mesovortices showed that 1) KDP drops precede ~95% of mesovortices and provide an initial indication of where a mesovortex may develop, 2) midlevel KDP cores are a potentially useful precursor signature because they precede a majority of mesovortices and have higher magnitudes for mesovortices that produce wind damage or tornadoes, 3) low-level KDP cores and areas of enhanced spectrum width have higher magnitudes for mesovortices that produce wind damage or tornadoes, but tend to develop at about the same time as the mesovortex, which makes them more useful as diagnostic than as predictive signatures, and 4) as range from the radar increases, the radar signatures become less useful in anticipating mesovortex intensity but can still be used to anticipate mesovortex development or build confidence in mesovortex existence.
与准线性对流系统中间涡相关的雷达信号
最近的业务驱动研究产生了一个框架,称为 "三要素法和中涡警报系统",可帮助预报员预测准线性对流系统(QLCS)中的中涡发展并发出警报。然而,双极化雷达数据尚未纳入这一框架。因此,我们分析了与 QLCS 中涡相关的几种双极化和单极化雷达特征,以确定它们是否能提供有关中涡发展和强度的更多信息。对 167 个中间涡旋的分析表明:1)KDP 下降先于约 95% 的中间涡旋,并提供了中间涡旋可能发展位置的初步指示;2)中层 KDP 核心是一个潜在有用的前兆特征,因为它们先于大多数中间涡旋,并在产生风灾或龙卷风的中间涡旋中具有较高的量级;3)低层 KDP 核心和频谱宽度增强区域在产生风灾或龙卷风的中间涡旋中具有较高的量级、4)随着雷达距离的增加,雷达信号在预测中间涡强度方面的作用减弱,但仍可用于预测中间涡的发展或建立对中间涡存在的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信