{"title":"The Important Role of Denitrifying Exoelectrogens in Single-Chamber Microbial Fuel Cells after Nitrate Exposure","authors":"Xiaojun Jin, Wenyi Wang, Zhuo Yan, Dake Xu","doi":"10.3390/separations11060187","DOIUrl":null,"url":null,"abstract":"Wastewater treatment using microbial fuel cells (MFCs) is a potentially useful technology due to its low cost, environmental friendliness, and low sludge production. In this study, a single-chambered air cathode MFC (SCMFC) was developed and investigated regarding its performance and microbial community evolution following nitrate exposure. During long-term operation, diverse denitrifiers accumulated on the electrodes to form a denitrifying MFC (DNMFC) with stable activity for nitrate reduction. The DNMFC presented considerably higher electroactivity, stability, and denitrification rates than the SCMFC. Though energy recovery decreased in the DNMFC by partial organics utilized for heterotrophic denitrification, the electron transfer efficiency increased. Geobacter as the absolutely dominant genus in the SCMFC anode was eliminated and replaced by Azonexus and Pseudomonas in the DNMFC. Furthermore, the biomass of Pseudomonas (151.0 ng/μL) in the DNMFC cathode was five-fold higher than that in the SCMFC, although the bacterial community compositions were quite similar. The DNMFC with highly abundant Pseudomonas exhibited much better performance in terms of electrochemical activity and nitrate removal. The evolution process of functional bacteria from the SCMFC to the DNMFC comprehensively reveals the significant role of denitrifying electroactive bacteria in a bioelectrochemical system for nitrogen-containing wastewater treatment.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11060187","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater treatment using microbial fuel cells (MFCs) is a potentially useful technology due to its low cost, environmental friendliness, and low sludge production. In this study, a single-chambered air cathode MFC (SCMFC) was developed and investigated regarding its performance and microbial community evolution following nitrate exposure. During long-term operation, diverse denitrifiers accumulated on the electrodes to form a denitrifying MFC (DNMFC) with stable activity for nitrate reduction. The DNMFC presented considerably higher electroactivity, stability, and denitrification rates than the SCMFC. Though energy recovery decreased in the DNMFC by partial organics utilized for heterotrophic denitrification, the electron transfer efficiency increased. Geobacter as the absolutely dominant genus in the SCMFC anode was eliminated and replaced by Azonexus and Pseudomonas in the DNMFC. Furthermore, the biomass of Pseudomonas (151.0 ng/μL) in the DNMFC cathode was five-fold higher than that in the SCMFC, although the bacterial community compositions were quite similar. The DNMFC with highly abundant Pseudomonas exhibited much better performance in terms of electrochemical activity and nitrate removal. The evolution process of functional bacteria from the SCMFC to the DNMFC comprehensively reveals the significant role of denitrifying electroactive bacteria in a bioelectrochemical system for nitrogen-containing wastewater treatment.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization