Conditions of Safe Dominating Set in Some Graph Families

Devine Fathy Mae S. Grino, I. S. Jr.
{"title":"Conditions of Safe Dominating Set in Some Graph Families","authors":"Devine Fathy Mae S. Grino, I. S. Jr.","doi":"10.9734/arjom/2024/v20i6807","DOIUrl":null,"url":null,"abstract":"Let X be an arbitrary Banach space. For a nontrivial connected graph G and nonempty subset S \\(\\subseteq\\) V (G), S is a safe dominating set of G if and only if S is a dominating set of G and every component X of G[S] and every component Y of G[V (G) \\ S] adjacent to X, |X| \\(\\ge\\) |Y|. Moreover, S is called a minimum safe dominating set if S is a safe dominating set of the smallest size in a given graph. The cardinality of the minimum safe dominating set of G is the safe domination number of G, denoted by \\(\\gamma s\\)(G). In this paper, we characterized the safe dominating set and determine its corresponding safe domination number in some special classes of graphs.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2024/v20i6807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be an arbitrary Banach space. For a nontrivial connected graph G and nonempty subset S \(\subseteq\) V (G), S is a safe dominating set of G if and only if S is a dominating set of G and every component X of G[S] and every component Y of G[V (G) \ S] adjacent to X, |X| \(\ge\) |Y|. Moreover, S is called a minimum safe dominating set if S is a safe dominating set of the smallest size in a given graph. The cardinality of the minimum safe dominating set of G is the safe domination number of G, denoted by \(\gamma s\)(G). In this paper, we characterized the safe dominating set and determine its corresponding safe domination number in some special classes of graphs.
某些图族中安全支配集的条件
让 X 是一个任意的巴拿赫空间。对于一个非难连通图 G 和非空子集 S \(\subseteq\) V (G),当且仅当 S 是 G 的支配集且 G[S] 的每个分量 X 和 G[V (G) \ S] 的每个分量 Y 都与 X 相邻时,S 是 G 的安全支配集,|X| \(\ge\) |Y|。此外,如果 S 是给定图中最小的安全支配集,那么 S 称为最小安全支配集。G 的最小安全支配集的心数就是 G 的安全支配数,用 \(\gamma s\)(G) 表示。在本文中,我们将描述安全支配集的特征,并确定其在一些特殊图类中的相应安全支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信