Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study

Q2 Physics and Astronomy
Larisa Latypova, F. Murzakhanov, G. Mamin, M. Sadovnikova, H. J. von Bardeleben, Marat Gafurov
{"title":"Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study","authors":"Larisa Latypova, F. Murzakhanov, G. Mamin, M. Sadovnikova, H. J. von Bardeleben, Marat Gafurov","doi":"10.3390/quantum6020019","DOIUrl":null,"url":null,"abstract":"The distinct spin, optical, and coherence characteristics of solid-state spin defects in semiconductors have positioned them as potential qubits for quantum technologies. Both bulk and two-dimensional materials, with varying structural properties, can serve as crystalline hosts for color centers. In this study, we conduct a comparative analysis of the spin–optical, electron–nuclear, and relaxation properties of nitrogen-bound vacancy defects using electron paramagnetic resonance (EPR) and electron–nuclear double resonance (ENDOR) techniques. We examine key parameters of the spin Hamiltonian for the nitrogen vacancy (NV−) center in 4H-SiC: D = 1.3 GHz, Azz = 1.1 MHz, and CQ = 2.53 MHz, as well as for the boron vacancy (VB−) in hBN: D = 3.6 GHz, Azz = 85 MHz, and CQ = 2.11 MHz, and their dependence on the material matrix. The spin–spin relaxation times T2 (NV− center: 50 µs and VB−: 15 µs) are influenced by the local nuclear environment and spin diffusion while Rabi oscillation damping times depend on crystal size and the spatial distribution of microwave excitation. The ENDOR absorption width varies significantly among color centers due to differences in crystal structures. These findings underscore the importance of selecting an appropriate material platform for developing quantum registers based on high-spin color centers in quantum information systems.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":"21 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum6020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The distinct spin, optical, and coherence characteristics of solid-state spin defects in semiconductors have positioned them as potential qubits for quantum technologies. Both bulk and two-dimensional materials, with varying structural properties, can serve as crystalline hosts for color centers. In this study, we conduct a comparative analysis of the spin–optical, electron–nuclear, and relaxation properties of nitrogen-bound vacancy defects using electron paramagnetic resonance (EPR) and electron–nuclear double resonance (ENDOR) techniques. We examine key parameters of the spin Hamiltonian for the nitrogen vacancy (NV−) center in 4H-SiC: D = 1.3 GHz, Azz = 1.1 MHz, and CQ = 2.53 MHz, as well as for the boron vacancy (VB−) in hBN: D = 3.6 GHz, Azz = 85 MHz, and CQ = 2.11 MHz, and their dependence on the material matrix. The spin–spin relaxation times T2 (NV− center: 50 µs and VB−: 15 µs) are influenced by the local nuclear environment and spin diffusion while Rabi oscillation damping times depend on crystal size and the spatial distribution of microwave excitation. The ENDOR absorption width varies significantly among color centers due to differences in crystal structures. These findings underscore the importance of selecting an appropriate material platform for developing quantum registers based on high-spin color centers in quantum information systems.
块状(SiC)和二维(hBN)晶体中的氮相关高旋空位缺陷:磁共振(EPR 和 ENDOR)对比研究
半导体中的固态自旋缺陷具有独特的自旋、光学和相干特性,因此被定位为量子技术的潜在量子比特。具有不同结构特性的块体材料和二维材料都可以作为色心的结晶宿主。在本研究中,我们利用电子顺磁共振(EPR)和电子核双共振(ENDOR)技术对氮结合空位缺陷的自旋光学、电子核和弛豫特性进行了比较分析。我们研究了 4H-SiC 中氮空位(NV-)中心自旋哈密顿的关键参数:D = 1.3 GHz、Azz = 1.1 MHz 和 CQ = 2.53 MHz,以及 hBN 中硼空位(VB-)的关键参数:D = 3.6 GHz、Azz = 85 MHz 和 CQ = 2.11 MHz,以及它们与材料基体的关系。自旋-自旋弛豫时间 T2(NV- 中心:50 µs 和 VB-:15 µs)受局部核环境和自旋扩散的影响,而拉比振荡阻尼时间则取决于晶体尺寸和微波激发的空间分布。由于晶体结构的差异,不同颜色中心的ENDOR吸收宽度也大不相同。这些发现强调了在量子信息系统中开发基于高自旋颜色中心的量子寄存器时选择合适材料平台的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信