{"title":"An industrial heat source dataset based on remotely sensed active fire/hotspot detection in China from 2012 to 2021","authors":"Caihong Ma, Xin Sui, Linlin Guan, Yanmei Xie, Tianzhu Li, Pengyu Zhang, Yubao Qiu, Weimin Huang","doi":"10.1002/gdj3.259","DOIUrl":null,"url":null,"abstract":"<p>The distribution of industrial heat sources (IHSs) is a crucial indicator for evaluating energy consumption and air pollution levels. However, there is a notable lack of IHS datasets in China that are frequently updated, span long periods, contain detailed characteristic information, have been individually validated and are publicly available. In this study, IHS datasets from China between 2012 and 2021 were constructed using the Visible Infrared Imaging Radiometer Suite (VIIRS) I Band 375 m NRT Active Fire/Hotspots (ACF) Product (VNP14IMGTDL_NRT) to monitor and analyse large-scale IHSs. First, a density segmentation method based on an improved K-means algorithm using ACF data and spatial topological correlation analysis was conducted to construct the IHS. Then, 4410 records covering China between 2012 and 2021, with 21 attributes, were obtained and verified, with an individual identification precision of 95.08% via manual verification based on high-resolution remote-sensing images and point of interest (POI) data. Finally, the trend of the spatiotemporal variation in IHSs was analysed using a long time series. The results showed that the spatial distribution of IHSs in China from 2012 to 2021 exhibited local aggregation and a gradual shift from east to west. In addition, the number of IHSs in China showed an initial increasing trend from 2012 to 2014, followed by a decrease since 2014, consistent with national energy reform-related policies. The results of this study indicate the temporal variation in IHSs, enhance the precision of identifying fire location categories and demonstrate the potential for improving energy efficiency, reducing emissions and ensuring sustainable development in China.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.259","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.259","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution of industrial heat sources (IHSs) is a crucial indicator for evaluating energy consumption and air pollution levels. However, there is a notable lack of IHS datasets in China that are frequently updated, span long periods, contain detailed characteristic information, have been individually validated and are publicly available. In this study, IHS datasets from China between 2012 and 2021 were constructed using the Visible Infrared Imaging Radiometer Suite (VIIRS) I Band 375 m NRT Active Fire/Hotspots (ACF) Product (VNP14IMGTDL_NRT) to monitor and analyse large-scale IHSs. First, a density segmentation method based on an improved K-means algorithm using ACF data and spatial topological correlation analysis was conducted to construct the IHS. Then, 4410 records covering China between 2012 and 2021, with 21 attributes, were obtained and verified, with an individual identification precision of 95.08% via manual verification based on high-resolution remote-sensing images and point of interest (POI) data. Finally, the trend of the spatiotemporal variation in IHSs was analysed using a long time series. The results showed that the spatial distribution of IHSs in China from 2012 to 2021 exhibited local aggregation and a gradual shift from east to west. In addition, the number of IHSs in China showed an initial increasing trend from 2012 to 2014, followed by a decrease since 2014, consistent with national energy reform-related policies. The results of this study indicate the temporal variation in IHSs, enhance the precision of identifying fire location categories and demonstrate the potential for improving energy efficiency, reducing emissions and ensuring sustainable development in China.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.