Sukunya Areeya, E. Panakkal, Punyanuch Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, Apinya Kaoloun, Nina Hartini, Yu-Shen Cheng, Mohamed Kchaou, Srideep Dasari, M. Gundupalli
{"title":"A Review of Sugarcane Biorefinery: From Waste to Value-Added Products","authors":"Sukunya Areeya, E. Panakkal, Punyanuch Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, Apinya Kaoloun, Nina Hartini, Yu-Shen Cheng, Mohamed Kchaou, Srideep Dasari, M. Gundupalli","doi":"10.14416/j.asep.2024.06.004","DOIUrl":null,"url":null,"abstract":"The sugarcane industry is one of the agricultural sectors for the production of commodity products that can generate sugars along with byproducts such as straw, bagasse, and molasses. When subjected to effective processing, these byproducts of sugarcane cease to be categorized as waste, as they can be converted into resources rich in carbon for use in biorefineries. Numerous conversion technologies consisting of thermochemical, biochemical, and chemical processes of biorefinery are also applied to produce high-value products, either from 1st Generation (molasses feedstock) or through integrated 1st Generation and 2nd Generation configurations (molasses and sugarcane lignocellulose feedstock). This review focuses on recent progress in techniques for maximizing the value of sugarcane, encompassing aspects, such as sugarcane processing, pretreatment methods, and the fermentation of sugar derivatives to six value-added products, namely ethanol, xylitol, butanol, polyhydroxyalkanoates, biogas, and nanocellulose. Furthermore, this review encompasses an examination of the economic and environmental repercussions associated with sugarcane biorefinery. It also explores advancements using cutting-edge technology to address obstacles in industrial production.","PeriodicalId":503211,"journal":{"name":"Applied Science and Engineering Progress","volume":"58 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2024.06.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The sugarcane industry is one of the agricultural sectors for the production of commodity products that can generate sugars along with byproducts such as straw, bagasse, and molasses. When subjected to effective processing, these byproducts of sugarcane cease to be categorized as waste, as they can be converted into resources rich in carbon for use in biorefineries. Numerous conversion technologies consisting of thermochemical, biochemical, and chemical processes of biorefinery are also applied to produce high-value products, either from 1st Generation (molasses feedstock) or through integrated 1st Generation and 2nd Generation configurations (molasses and sugarcane lignocellulose feedstock). This review focuses on recent progress in techniques for maximizing the value of sugarcane, encompassing aspects, such as sugarcane processing, pretreatment methods, and the fermentation of sugar derivatives to six value-added products, namely ethanol, xylitol, butanol, polyhydroxyalkanoates, biogas, and nanocellulose. Furthermore, this review encompasses an examination of the economic and environmental repercussions associated with sugarcane biorefinery. It also explores advancements using cutting-edge technology to address obstacles in industrial production.