Synthesis Techniques for Fault-tolerant Quantum Circuit Implementation using the Clifford+Z_N-group

L. Biswal, Debjyoti Bhattacharjee, Amlan Chakrabarti, Anupam Chattopadhyay
{"title":"Synthesis Techniques for Fault-tolerant Quantum Circuit Implementation using the Clifford+Z_N-group","authors":"L. Biswal, Debjyoti Bhattacharjee, Amlan Chakrabarti, Anupam Chattopadhyay","doi":"10.1145/3673240","DOIUrl":null,"url":null,"abstract":"Decoherence jeopardizes the entanglement of fragile quantum states, and is among the foremost challenges towards engineering scalable quantum computers. Realizing quantum circuit implementation with small qubit count and shallow circuit depth is necessary due to the linear scaling of decoherence rate with qubit count and circuit depth. Conversely, reasonable correction of small unitary errors can be achieved by using surface codes along with a transversal gate set to protect quantum information from decoherence. In this paper, we analyze and report the upper bound of non-Clifford phase-depth for different mapping schemes and synthesis approaches. We introduce a synthesis methodology based on lookup-table (LUT) networks, wherein the Boolean logic translates into fault-tolerant quantum logic using Clifford+ZN group with zero ancillary cost. We also present fault-tolerant synthesis techniques for k-LUT network using additional ancillary lines with exponential phase-count and unit phase-depth.","PeriodicalId":504393,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"57 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3673240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decoherence jeopardizes the entanglement of fragile quantum states, and is among the foremost challenges towards engineering scalable quantum computers. Realizing quantum circuit implementation with small qubit count and shallow circuit depth is necessary due to the linear scaling of decoherence rate with qubit count and circuit depth. Conversely, reasonable correction of small unitary errors can be achieved by using surface codes along with a transversal gate set to protect quantum information from decoherence. In this paper, we analyze and report the upper bound of non-Clifford phase-depth for different mapping schemes and synthesis approaches. We introduce a synthesis methodology based on lookup-table (LUT) networks, wherein the Boolean logic translates into fault-tolerant quantum logic using Clifford+ZN group with zero ancillary cost. We also present fault-tolerant synthesis techniques for k-LUT network using additional ancillary lines with exponential phase-count and unit phase-depth.
利用克利福德+Z_N 组实现容错量子电路的合成技术
退相干会危及脆弱量子态的纠缠,是工程可扩展量子计算机面临的首要挑战之一。由于退相干率与量子比特数和电路深度呈线性比例关系,因此必须以较小的量子比特数和较浅的电路深度来实现量子电路。相反,通过使用表面代码和横向门集来保护量子信息免受退相干影响,可以实现对微小单元错误的合理修正。本文分析并报告了不同映射方案和合成方法的非克里福德相位深度上限。我们介绍了一种基于查找表(LUT)网络的合成方法,其中布尔逻辑使用克利福德+ZN 组以零辅助成本转化为容错量子逻辑。我们还介绍了 k-LUT 网络的容错综合技术,该技术使用具有指数相位计数和单位相位深度的附加辅助线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信