{"title":"Insight into the mechanism on co-leaching of REEs and Fe from NdFeB sludge: Elucidating phase transformation and co-leaching kinetics","authors":"Xinglan Li, Zishuai Liu, Xiu Liu, Xuekun Tang, Huiyang Lin, Lushuai Yao, Wanting Bai, Jiangfeng Guo","doi":"10.37190/ppmp/189908","DOIUrl":null,"url":null,"abstract":"The NdFeB sludge is a secondary rare earth resource abundant in both REEs and Fe elements. However, there tends to be a focus on recovering only high-value rare earths while neglecting the recycling of high-content iron, leading to a low comprehensive utilization of this secondary rare earth resource. The present study builds upon previous research on the separation and coextraction of REEs and Fe from NdFeB sludge, further investigating the phase transformation behavior during oxidation roasting and elucidating the kinetics of simultaneous leaching of REEs and Fe. The results suggest that NdFeB waste exhibited a loose morphology and demonstrated high susceptibility to dissolution in hydrochloric acid when subjected to roasting temperatures below 500℃. The morphology of NdFeB waste becomes denser and more spherical, hindering its dissolution in hydrochloric acid when the roasting temperature exceeded 500℃, resulting in a reduction in the leaching efficiencies of both roasting. The co-leaching of REEs and Fe in NdFeB sludge is governed by internal diffusion for REEs and chemical reaction for Fe, as evidenced by the kinetic results. Furthermore, it is observed that the apparent activation energy of rare earth surpasses that of iron, leading to the attainment of equilibrium for rare earth prior to that of iron during the synchronous leaching process. The findings of this study hold theoretical significance in enhancing the overall efficiency of secondary rare earth resource utilization.","PeriodicalId":20169,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"82 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/189908","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The NdFeB sludge is a secondary rare earth resource abundant in both REEs and Fe elements. However, there tends to be a focus on recovering only high-value rare earths while neglecting the recycling of high-content iron, leading to a low comprehensive utilization of this secondary rare earth resource. The present study builds upon previous research on the separation and coextraction of REEs and Fe from NdFeB sludge, further investigating the phase transformation behavior during oxidation roasting and elucidating the kinetics of simultaneous leaching of REEs and Fe. The results suggest that NdFeB waste exhibited a loose morphology and demonstrated high susceptibility to dissolution in hydrochloric acid when subjected to roasting temperatures below 500℃. The morphology of NdFeB waste becomes denser and more spherical, hindering its dissolution in hydrochloric acid when the roasting temperature exceeded 500℃, resulting in a reduction in the leaching efficiencies of both roasting. The co-leaching of REEs and Fe in NdFeB sludge is governed by internal diffusion for REEs and chemical reaction for Fe, as evidenced by the kinetic results. Furthermore, it is observed that the apparent activation energy of rare earth surpasses that of iron, leading to the attainment of equilibrium for rare earth prior to that of iron during the synchronous leaching process. The findings of this study hold theoretical significance in enhancing the overall efficiency of secondary rare earth resource utilization.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.