Can I Eat Melted-Frozen-Melted Bread?: Use of Practical Assignments to Harmonize Mathematics and STEM Courses and as a Measure for Future Technology Studies
{"title":"Can I Eat Melted-Frozen-Melted Bread?: Use of Practical Assignments to Harmonize Mathematics and STEM Courses and as a Measure for Future Technology Studies","authors":"Tonje Jin, Kirsi Helkala","doi":"10.12973/ejmse.5.2.81","DOIUrl":null,"url":null,"abstract":"In the domain of engineering education, the crucial role of mathematics, especially Calculus, cannot be overstated, as it lays the foundational groundwork for numerous sciences, technology, engineering and mathematics (STEM) courses. The integration of mathematics into STEM disciplines is achieved through the practical application of mathematical concepts in real-world scenarios or in conjunction with other STEM subjects, thereby enhancing the coherence of engineering studies and acting as a significant motivational catalyst for students. This paper presents an analytical narrative of a practical mathematics assignment, woven into the Calculus curriculum and other STEM courses from 2013 to 2018. It delves into the potential impacts of these practical assignments on student performance and attitudes by evaluating data sourced from final exam scores and anonymous course surveys, both before and after the intervention period. Through the analysis of an extensive dataset comprising 1526 final exam scores, this study endeavors to make a substantive contribution to Future Technology Studies (FTS), focusing on the strategic harmonization of mathematics and STEM courses to enrich the educational experience and foster a more cohesive and applied learning framework in these disciplines.","PeriodicalId":506611,"journal":{"name":"European Journal of Mathematics and Science Education","volume":"92 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mathematics and Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12973/ejmse.5.2.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the domain of engineering education, the crucial role of mathematics, especially Calculus, cannot be overstated, as it lays the foundational groundwork for numerous sciences, technology, engineering and mathematics (STEM) courses. The integration of mathematics into STEM disciplines is achieved through the practical application of mathematical concepts in real-world scenarios or in conjunction with other STEM subjects, thereby enhancing the coherence of engineering studies and acting as a significant motivational catalyst for students. This paper presents an analytical narrative of a practical mathematics assignment, woven into the Calculus curriculum and other STEM courses from 2013 to 2018. It delves into the potential impacts of these practical assignments on student performance and attitudes by evaluating data sourced from final exam scores and anonymous course surveys, both before and after the intervention period. Through the analysis of an extensive dataset comprising 1526 final exam scores, this study endeavors to make a substantive contribution to Future Technology Studies (FTS), focusing on the strategic harmonization of mathematics and STEM courses to enrich the educational experience and foster a more cohesive and applied learning framework in these disciplines.