Stochastic modelling of material variability in structural dynamics: A threefold comparison of Monte Carlo, polynomial chaos, and random sampling techniques

Rakesh Kumar
{"title":"Stochastic modelling of material variability in structural dynamics: A threefold comparison of Monte Carlo, polynomial chaos, and random sampling techniques","authors":"Rakesh Kumar","doi":"10.31276/vjste.66(2).33-51","DOIUrl":null,"url":null,"abstract":"This article investigates the influence of random elastic modulus on beam eigenfrequencies using multiple simulation techniques: Monte Carlo simulations (employing Cholesky decomposition (MCS-CD) and Kosambi-Karhunen-Loève expansion (MCS-KKL)), Polynomial Chaos expansion (PCE), and a proposed Random Sampling method (RSM). Anomalies in Monte Carlo simulations, where normally distributed elastic modulus led to negative values and imaginary eigenfrequencies, were effectively addressed by adopting a log-normal distribution. Comparative analyses focused on covariance variation of the first three eigenfrequencies with correlation length and standard deviation of the random field, highlighting nuanced differences between normal and log-normal distributions. PCE exhibited distinct responses, showcasing variations in covariance with different distributions. The study culminates in eigenfrequency estimation using the proposed RSM, wherein the beam is discretised into n elements with randomly assigned elastic moduli. The mean and variance of eigenfrequencies are compared with existing methods, which represent an alternative method for achieving similar outcomes.These comparative studies provide a comprehensive understanding of how different statistical treatments and simulation methods impact the reliability and accuracy of eigenfrequency predictions in beams with random elastic properties, thus contributing valuable insights for structural analysis and design under uncertainty.","PeriodicalId":506424,"journal":{"name":"Ministry of Science and Technology, Vietnam","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ministry of Science and Technology, Vietnam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/vjste.66(2).33-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the influence of random elastic modulus on beam eigenfrequencies using multiple simulation techniques: Monte Carlo simulations (employing Cholesky decomposition (MCS-CD) and Kosambi-Karhunen-Loève expansion (MCS-KKL)), Polynomial Chaos expansion (PCE), and a proposed Random Sampling method (RSM). Anomalies in Monte Carlo simulations, where normally distributed elastic modulus led to negative values and imaginary eigenfrequencies, were effectively addressed by adopting a log-normal distribution. Comparative analyses focused on covariance variation of the first three eigenfrequencies with correlation length and standard deviation of the random field, highlighting nuanced differences between normal and log-normal distributions. PCE exhibited distinct responses, showcasing variations in covariance with different distributions. The study culminates in eigenfrequency estimation using the proposed RSM, wherein the beam is discretised into n elements with randomly assigned elastic moduli. The mean and variance of eigenfrequencies are compared with existing methods, which represent an alternative method for achieving similar outcomes.These comparative studies provide a comprehensive understanding of how different statistical treatments and simulation methods impact the reliability and accuracy of eigenfrequency predictions in beams with random elastic properties, thus contributing valuable insights for structural analysis and design under uncertainty.
结构动力学中材料可变性的随机建模:蒙特卡罗、多项式混沌和随机抽样技术的三重比较
本文采用多种模拟技术研究了随机弹性模量对梁特征频率的影响:蒙特卡罗模拟(采用 Cholesky 分解 (MCS-CD) 和 Kosambi-Karhunen-Loève 扩展 (MCS-KKL))、多项式混沌扩展 (PCE) 和拟议的随机抽样方法 (RSM)。在蒙特卡罗模拟中,正态分布的弹性模量会导致负值和虚特征频率,而采用对数正态分布则能有效解决这一问题。比较分析侧重于前三个特征频率与随机场的相关长度和标准偏差的协方差变化,突出了正态分布和对数正态分布之间的细微差别。PCE 表现出不同的反应,展示了不同分布的协方差变化。研究的高潮是使用所提出的 RSM 估算特征频率,其中梁被离散为 n 个随机分配弹性模量的元素。这些比较研究让人们全面了解了不同的统计处理和模拟方法如何影响具有随机弹性特性的梁的特征频率预测的可靠性和准确性,从而为不确定条件下的结构分析和设计提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信