Enhanced Image Denoising with Diffusion Probability and Dictionary Learning Adaptation

JiLan Huang, ZhiXiong Jin
{"title":"Enhanced Image Denoising with Diffusion Probability and Dictionary Learning Adaptation","authors":"JiLan Huang, ZhiXiong Jin","doi":"10.17559/tv-20230808000859","DOIUrl":null,"url":null,"abstract":": Image denoising is essential for numerous image processing applications, where image noise can profoundly impact processing efficiency and output quality. Addressing the challenge of inflexible reference images in unconditional diffusion probability models and enhancing image denoising performance is of paramount importance. In this research, we propose a novel image denoising model based on component decoupling and introduce sensitivity decoupling operators to prevent entanglement and redundancy among different decoupling models. Additionally, we leverage a model-driven network to fuse image components, resisting noise and model degradation, thereby aiding network convergence. Subsequently, we construct an image adaptive denoising model incorporating diffusion probability and dictionary learning. Experimental results demonstrate the superiority of the proposed approach over other algorithms in grayscale image processing on the Set12 dataset, achieving a peak signal-to-noise ratio (PSNR) of 35.75 dB and an average structural similarity (SSIM) value of 92.68%. Similarly, on the BSD68 dataset, our algorithm outperforms others with a PSNR of 34.35 dB and an average SSIM of 93.89%. Furthermore, for colour image processing, our method yields higher PSNR and average SSIM compared to other approaches. The findings indicate a significant improvement in denoising effectiveness compared to prior methods, highlighting the practical value of the proposed image denoising algorithm.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20230808000859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Image denoising is essential for numerous image processing applications, where image noise can profoundly impact processing efficiency and output quality. Addressing the challenge of inflexible reference images in unconditional diffusion probability models and enhancing image denoising performance is of paramount importance. In this research, we propose a novel image denoising model based on component decoupling and introduce sensitivity decoupling operators to prevent entanglement and redundancy among different decoupling models. Additionally, we leverage a model-driven network to fuse image components, resisting noise and model degradation, thereby aiding network convergence. Subsequently, we construct an image adaptive denoising model incorporating diffusion probability and dictionary learning. Experimental results demonstrate the superiority of the proposed approach over other algorithms in grayscale image processing on the Set12 dataset, achieving a peak signal-to-noise ratio (PSNR) of 35.75 dB and an average structural similarity (SSIM) value of 92.68%. Similarly, on the BSD68 dataset, our algorithm outperforms others with a PSNR of 34.35 dB and an average SSIM of 93.89%. Furthermore, for colour image processing, our method yields higher PSNR and average SSIM compared to other approaches. The findings indicate a significant improvement in denoising effectiveness compared to prior methods, highlighting the practical value of the proposed image denoising algorithm.
利用扩散概率和字典学习自适应增强图像去噪
:图像去噪对许多图像处理应用都至关重要,因为图像噪声会严重影响处理效率和输出质量。解决无条件扩散概率模型中参考图像不灵活的难题并提高图像去噪性能至关重要。在这项研究中,我们提出了一种基于分量解耦的新型图像去噪模型,并引入了灵敏度解耦算子,以防止不同解耦模型之间的纠缠和冗余。此外,我们利用模型驱动网络来融合图像成分,抵御噪声和模型退化,从而帮助网络收敛。随后,我们构建了一个包含扩散概率和字典学习的图像自适应去噪模型。实验结果表明,在 Set12 数据集的灰度图像处理中,所提出的方法优于其他算法,达到了 35.75 dB 的峰值信噪比(PSNR)和 92.68% 的平均结构相似度(SSIM)值。同样,在 BSD68 数据集上,我们的算法也优于其他算法,PSNR 为 34.35 dB,平均 SSIM 为 93.89%。此外,在彩色图像处理方面,与其他方法相比,我们的方法产生了更高的 PSNR 和平均 SSIM。研究结果表明,与之前的方法相比,去噪效果有了显著提高,凸显了所提出的图像去噪算法的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信