Process-based modeling of energy consumption for multi-material FDM 3D printing

Wenzhen Yang, Yu Liu, Jinghua Chen, Yanqiu Chen, Erwei Shang
{"title":"Process-based modeling of energy consumption for multi-material FDM 3D printing","authors":"Wenzhen Yang, Yu Liu, Jinghua Chen, Yanqiu Chen, Erwei Shang","doi":"10.1108/jimse-10-2023-0008","DOIUrl":null,"url":null,"abstract":"Purpose This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.Design/methodology/approach An online measurement system for monitoring power and temperature has been integrated into the dual-extruder FDM printer. This system enables a comprehensive study of energy consumption during the dual-material FDM printing process, achieved by breaking down the entire dual-material printing procedure into distinct operational modes. Concurrently, the analysis of the G-code related to the dual-material FDM printing process is carried out.Findings This work involves an investigation of the execution instructions that delineate the tooling plan for FDM. We measure and simulate the nozzle temperature distributions with varying filament materials. In our work, we capture intricate details of energy consumption accurately, enabling us to predict fluctuations in power demand across different operational phases of multi-material FDM 3D printing processes.Originality/value This work establishes a model for quantifying the energy consumption of the dual-material FDM printing process. This model carries significant implications for enhancing the design of 3D printers and advancing their sustainability in mobile manufacturing endeavors.","PeriodicalId":34604,"journal":{"name":"Journal of Intelligent Manufacturing and Special Equipment","volume":"6 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing and Special Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jimse-10-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.Design/methodology/approach An online measurement system for monitoring power and temperature has been integrated into the dual-extruder FDM printer. This system enables a comprehensive study of energy consumption during the dual-material FDM printing process, achieved by breaking down the entire dual-material printing procedure into distinct operational modes. Concurrently, the analysis of the G-code related to the dual-material FDM printing process is carried out.Findings This work involves an investigation of the execution instructions that delineate the tooling plan for FDM. We measure and simulate the nozzle temperature distributions with varying filament materials. In our work, we capture intricate details of energy consumption accurately, enabling us to predict fluctuations in power demand across different operational phases of multi-material FDM 3D printing processes.Originality/value This work establishes a model for quantifying the energy consumption of the dual-material FDM printing process. This model carries significant implications for enhancing the design of 3D printers and advancing their sustainability in mobile manufacturing endeavors.
基于工艺的多材料 FDM 3D 打印能耗建模
设计/方法/途径 在双挤出机 FDM 印刷机中集成了一个在线测量系统,用于监测功率和温度。通过将整个双材料打印过程分解为不同的操作模式,该系统可以对双材料 FDM 打印过程中的能耗进行全面研究。同时,我们还对与双材料 FDM 印刷过程相关的 G 代码进行了分析。我们测量并模拟了不同长丝材料的喷嘴温度分布。在我们的工作中,我们准确地捕捉到了能源消耗的复杂细节,使我们能够预测多材料 FDM 3D 打印流程在不同运行阶段的电力需求波动。该模型对改进三维打印机的设计和提高其在移动制造领域的可持续性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信