Significant Productivity Gains through Programming with Large Language Models

Q1 Social Sciences
Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, Sven Mayer
{"title":"Significant Productivity Gains through Programming with Large Language Models","authors":"Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, Sven Mayer","doi":"10.1145/3661145","DOIUrl":null,"url":null,"abstract":"Large language models like GPT and Codex drastically alter many daily tasks, including programming, where they can rapidly generate code from natural language or informal specifications. Thus, they will change what it means to be a programmer and how programmers act during software development. This work explores how AI assistance for code generation impacts productivity. In our user study (N=24), we asked programmers to complete Python programming tasks supported by a) an auto-complete interface using GitHub Copilot, b) a conversational system using GPT-3, and c) traditionally with just the web browser. Aside from significantly increasing productivity metrics, participants displayed distinctive usage patterns and strategies, highlighting that the form of presentation and interaction affects how users engage with these systems. Our findings emphasize the benefits of AI-assisted coding and highlight the different design challenges for these systems.","PeriodicalId":36902,"journal":{"name":"Proceedings of the ACM on Human-Computer Interaction","volume":"3 8","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3661145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models like GPT and Codex drastically alter many daily tasks, including programming, where they can rapidly generate code from natural language or informal specifications. Thus, they will change what it means to be a programmer and how programmers act during software development. This work explores how AI assistance for code generation impacts productivity. In our user study (N=24), we asked programmers to complete Python programming tasks supported by a) an auto-complete interface using GitHub Copilot, b) a conversational system using GPT-3, and c) traditionally with just the web browser. Aside from significantly increasing productivity metrics, participants displayed distinctive usage patterns and strategies, highlighting that the form of presentation and interaction affects how users engage with these systems. Our findings emphasize the benefits of AI-assisted coding and highlight the different design challenges for these systems.
使用大型语言模型编程可显著提高生产率
像 GPT 和 Codex 这样的大型语言模型可以从自然语言或非正式规范中快速生成代码,极大地改变了包括编程在内的许多日常工作。因此,它们将改变程序员的含义以及程序员在软件开发过程中的行为方式。这项工作探讨了人工智能辅助代码生成如何影响工作效率。在我们的用户研究(N=24)中,我们要求程序员在以下支持下完成 Python 编程任务:a) 使用 GitHub Copilot 的自动完成界面;b) 使用 GPT-3 的对话系统;c) 传统上仅使用网络浏览器。除了大幅提高工作效率指标外,参与者还表现出了独特的使用模式和策略,这凸显了演示和交互形式对用户如何使用这些系统的影响。我们的研究结果强调了人工智能辅助编码的优势,并突出了这些系统所面临的不同设计挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Human-Computer Interaction
Proceedings of the ACM on Human-Computer Interaction Social Sciences-Social Sciences (miscellaneous)
CiteScore
5.90
自引率
0.00%
发文量
257
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信