Santanu Borgohain, Sumant K. Dalai, Rangababu Peesapati, G. Panda
{"title":"IoT based solar power forecasting using SSA-ELM technique","authors":"Santanu Borgohain, Sumant K. Dalai, Rangababu Peesapati, G. Panda","doi":"10.1515/ijeeps-2024-0148","DOIUrl":null,"url":null,"abstract":"Abstract The optimizing of renewable energy use and grid integration relies on accurate solar power predictions. In order to predict the amount of power that solar photovoltaic (PV) systems would produce inside an IoT framework, this study suggests a new method that integrates Singular Spectrum Analysis (SSA) with Extreme Learning Machine technology. The SSA algorithm makes sense of solar power data by separating it into its component parts, such as trend, seasonality, and noise. The ELM model, a quick and effective feedforward neural network with a single hidden layer, takes these broken-down parts as input characteristics. In order to enhance the accuracy of solar power forecasts, the suggested strategy combines the decomposition skills of SSA with the predictive capability of ELM. Data acquired by solar PV sensors is input into the IoT-based forecasting model, which then undergoes preprocessing with SSA, feature extraction, model training with ELM, and performance evaluation. The SSA-ELM methodology has been successfully tested on real solar power data and has shown promising results in terms of accuracy measures such as low mean absolute error and mean absolute percentage error. By implementing the suggested method, accurate projections of solar output can be made, leading to better energy management, lower costs, and the smooth incorporation of renewables into smart grids. A dependable and computationally efficient method for solar forecasting in Internet of Things applications is provided by the combination of SSA and ELM.","PeriodicalId":45651,"journal":{"name":"International Journal of Emerging Electric Power Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Electric Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijeeps-2024-0148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The optimizing of renewable energy use and grid integration relies on accurate solar power predictions. In order to predict the amount of power that solar photovoltaic (PV) systems would produce inside an IoT framework, this study suggests a new method that integrates Singular Spectrum Analysis (SSA) with Extreme Learning Machine technology. The SSA algorithm makes sense of solar power data by separating it into its component parts, such as trend, seasonality, and noise. The ELM model, a quick and effective feedforward neural network with a single hidden layer, takes these broken-down parts as input characteristics. In order to enhance the accuracy of solar power forecasts, the suggested strategy combines the decomposition skills of SSA with the predictive capability of ELM. Data acquired by solar PV sensors is input into the IoT-based forecasting model, which then undergoes preprocessing with SSA, feature extraction, model training with ELM, and performance evaluation. The SSA-ELM methodology has been successfully tested on real solar power data and has shown promising results in terms of accuracy measures such as low mean absolute error and mean absolute percentage error. By implementing the suggested method, accurate projections of solar output can be made, leading to better energy management, lower costs, and the smooth incorporation of renewables into smart grids. A dependable and computationally efficient method for solar forecasting in Internet of Things applications is provided by the combination of SSA and ELM.
期刊介绍:
International Journal of Emerging Electric Power Systems (IJEEPS) publishes significant research and scholarship related to latest and up-and-coming developments in power systems. The mandate of the journal is to assemble high quality papers from the recent research and development efforts in new technologies and techniques for generation, transmission, distribution and utilization of electric power. Topics The range of topics includes: electric power generation sources integration of unconventional sources into existing power systems generation planning and control new technologies and techniques for power transmission, distribution, protection, control and measurement power system analysis, economics, operation and stability deregulated power systems power system communication metering technologies demand-side management industrial electric power distribution and utilization systems.