Identifying source term and initial value simultaneously for the time-fractional diffusion equation with Caputo-like hyper-Bessel operator

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fan Yang, Ying Cao, XiaoXiao Li
{"title":"Identifying source term and initial value simultaneously for the time-fractional diffusion equation with Caputo-like hyper-Bessel operator","authors":"Fan Yang, Ying Cao, XiaoXiao Li","doi":"10.1007/s13540-024-00304-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the inverse problem for identifying the source term and the initial value of time-fractional diffusion equation with Caputo-like counterpart hyper-Bessel operator. Firstly, we prove that the problem is ill-posed and give the conditional stability result. Then, we choose the Tikhonov regularization method to solve this ill-posed problem, and give the error estimates under a priori and a posteriori regularization parameter selection rules. Finally, we give numerical examples to illustrate the effectiveness of this method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00304-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the inverse problem for identifying the source term and the initial value of time-fractional diffusion equation with Caputo-like counterpart hyper-Bessel operator. Firstly, we prove that the problem is ill-posed and give the conditional stability result. Then, we choose the Tikhonov regularization method to solve this ill-posed problem, and give the error estimates under a priori and a posteriori regularization parameter selection rules. Finally, we give numerical examples to illustrate the effectiveness of this method.

Abstract Image

用卡普托类超贝塞尔算子同时识别时间分形扩散方程的源项和初值
本文研究了带有卡普托类对应超贝塞尔算子的时间分数扩散方程的源项和初值的反问题。首先,我们证明了该问题是求解困难的,并给出了条件稳定性结果。然后,我们选择 Tikhonov 正则化方法来求解该问题,并给出了先验正则化参数选择规则和后验正则化参数选择规则下的误差估计。最后,我们给出了数值示例来说明该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信