{"title":"Identifying source term and initial value simultaneously for the time-fractional diffusion equation with Caputo-like hyper-Bessel operator","authors":"Fan Yang, Ying Cao, XiaoXiao Li","doi":"10.1007/s13540-024-00304-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the inverse problem for identifying the source term and the initial value of time-fractional diffusion equation with Caputo-like counterpart hyper-Bessel operator. Firstly, we prove that the problem is ill-posed and give the conditional stability result. Then, we choose the Tikhonov regularization method to solve this ill-posed problem, and give the error estimates under a priori and a posteriori regularization parameter selection rules. Finally, we give numerical examples to illustrate the effectiveness of this method.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"47 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00304-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the inverse problem for identifying the source term and the initial value of time-fractional diffusion equation with Caputo-like counterpart hyper-Bessel operator. Firstly, we prove that the problem is ill-posed and give the conditional stability result. Then, we choose the Tikhonov regularization method to solve this ill-posed problem, and give the error estimates under a priori and a posteriori regularization parameter selection rules. Finally, we give numerical examples to illustrate the effectiveness of this method.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.