{"title":"AI-Based Affective Music Generation Systems: A Review of Methods and Challenges","authors":"Adyasha Dash, Kathleen Agres","doi":"10.1145/3672554","DOIUrl":null,"url":null,"abstract":"<p>Music is a powerful medium for altering the emotional state of the listener. In recent years, with significant advancements in computing capabilities, artificial intelligence-based (AI-based) approaches have become popular for creating affective music generation (AMG) systems. Entertainment, healthcare, and sensor-integrated interactive system design are a few of the areas in which AI-based affective music generation (AI-AMG) systems may have a significant impact. Given the surge of interest in this topic, this article aims to provide a comprehensive review of controllable AI-AMG systems. The main building blocks of an AI-AMG system are discussed, and existing systems are formally categorized based on the core algorithm used for music generation. In addition, this article discusses the main musical features employed to compose affective music, along with the respective AI-based approaches used for tailoring them. Lastly, the main challenges and open questions in this field, as well as their potential solutions, are presented to guide future research. We hope that this review will be useful for readers seeking to understand the state-of-the-art in AI-AMG systems, and gain an overview of the methods used for developing them, thereby helping them explore this field in the future.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"12 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3672554","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Music is a powerful medium for altering the emotional state of the listener. In recent years, with significant advancements in computing capabilities, artificial intelligence-based (AI-based) approaches have become popular for creating affective music generation (AMG) systems. Entertainment, healthcare, and sensor-integrated interactive system design are a few of the areas in which AI-based affective music generation (AI-AMG) systems may have a significant impact. Given the surge of interest in this topic, this article aims to provide a comprehensive review of controllable AI-AMG systems. The main building blocks of an AI-AMG system are discussed, and existing systems are formally categorized based on the core algorithm used for music generation. In addition, this article discusses the main musical features employed to compose affective music, along with the respective AI-based approaches used for tailoring them. Lastly, the main challenges and open questions in this field, as well as their potential solutions, are presented to guide future research. We hope that this review will be useful for readers seeking to understand the state-of-the-art in AI-AMG systems, and gain an overview of the methods used for developing them, thereby helping them explore this field in the future.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.