Huan Yee Koh, Anh T. N. Nguyen, Shirui Pan, Lauren T. May, Geoffrey I. Webb
{"title":"Physicochemical graph neural network for learning protein–ligand interaction fingerprints from sequence data","authors":"Huan Yee Koh, Anh T. N. Nguyen, Shirui Pan, Lauren T. May, Geoffrey I. Webb","doi":"10.1038/s42256-024-00847-1","DOIUrl":null,"url":null,"abstract":"In drug discovery, determining the binding affinity and functional effects of small-molecule ligands on proteins is critical. Current computational methods can predict these protein–ligand interaction properties but often lose accuracy without high-resolution protein structures and falter in predicting functional effects. Here we introduce PSICHIC (PhySIcoCHemICal graph neural network), a framework incorporating physicochemical constraints to decode interaction fingerprints directly from sequence data alone. This enables PSICHIC to attain capabilities in decoding mechanisms underlying protein–ligand interactions, achieving state-of-the-art accuracy and interpretability. Trained on identical protein–ligand pairs without structural data, PSICHIC matched and even surpassed leading structure-based methods in binding-affinity prediction. In an experimental library screening for adenosine A1 receptor agonists, PSICHIC discerned functional effects effectively, ranking the sole novel agonist within the top three. PSICHIC’s interpretable fingerprints identified protein residues and ligand atoms involved in interactions, and helped in unveiling selectivity determinants of protein–ligand interaction. We foresee PSICHIC reshaping virtual screening and deepening our understanding of protein–ligand interactions. Predicting the binding affinity between small-molecule ligands and proteins is a key task in drug discovery; however, sequence-based methods are often less accurate than structure-based ones. Koh et al. develop a graph neural network using physicochemical constraints that discovers interactions between small molecules and proteins directly from sequence data and that can achieve state-of-the-art performance without the need for costly, experimental 3D structures.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 6","pages":"673-687"},"PeriodicalIF":18.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00847-1","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In drug discovery, determining the binding affinity and functional effects of small-molecule ligands on proteins is critical. Current computational methods can predict these protein–ligand interaction properties but often lose accuracy without high-resolution protein structures and falter in predicting functional effects. Here we introduce PSICHIC (PhySIcoCHemICal graph neural network), a framework incorporating physicochemical constraints to decode interaction fingerprints directly from sequence data alone. This enables PSICHIC to attain capabilities in decoding mechanisms underlying protein–ligand interactions, achieving state-of-the-art accuracy and interpretability. Trained on identical protein–ligand pairs without structural data, PSICHIC matched and even surpassed leading structure-based methods in binding-affinity prediction. In an experimental library screening for adenosine A1 receptor agonists, PSICHIC discerned functional effects effectively, ranking the sole novel agonist within the top three. PSICHIC’s interpretable fingerprints identified protein residues and ligand atoms involved in interactions, and helped in unveiling selectivity determinants of protein–ligand interaction. We foresee PSICHIC reshaping virtual screening and deepening our understanding of protein–ligand interactions. Predicting the binding affinity between small-molecule ligands and proteins is a key task in drug discovery; however, sequence-based methods are often less accurate than structure-based ones. Koh et al. develop a graph neural network using physicochemical constraints that discovers interactions between small molecules and proteins directly from sequence data and that can achieve state-of-the-art performance without the need for costly, experimental 3D structures.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.