Long-read RNA sequencing can probe organelle genome pervasive transcription.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Matheus Sanita Lima, Douglas Silva Domingues, Alexandre Rossi Paschoal, David Roy Smith
{"title":"Long-read RNA sequencing can probe organelle genome pervasive transcription.","authors":"Matheus Sanita Lima, Douglas Silva Domingues, Alexandre Rossi Paschoal, David Roy Smith","doi":"10.1093/bfgp/elae026","DOIUrl":null,"url":null,"abstract":"<p><p>40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"695-701"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.

长读 RNA 测序可探测细胞器基因组的普遍转录。
40 年前,人们认为细胞器基因组是精简的,也许是原核生物过去遗留下来的不令人兴奋的基因组。然而,细胞器基因组学领域揭示了基因组结构(即基因组大小、结构和内容)的无与伦比的多样性。这些古怪基因组的转录也同样复杂--细胞器基因组普遍转录为大量 RNA 类型。然而,虽然已知细胞器蛋白编码基因会产生经过大量转录后处理的多聚转录本,但细胞器非编码转录本组的性质仍未得到很好的解决。在此,我们回顾了湿实验室实验和第二代测序数据(即短读数)是如何帮助确定某些类型的细胞器 RNA,尤其是非编码 RNA 的。然后,我们解释了第三代(长读数)RNA-Seq 数据如何代表细胞器转录组学的新前沿。我们表明,公共资源库(如 NCBI SRA)已包含足够的数据用于系统间比较研究,并认为细胞器生物学家可以从这些数据中获益。我们讨论了将公开可用的测序数据用于以细胞器为重点的研究的前景,并探讨了这种方法所面临的挑战。我们强调,缺乏一个专门用于细胞器基因组学/转录组学的综合数据库是这一领域发展的主要障碍,对基础科学和应用科学都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信