{"title":"The value of ripple mapping in the age of coherent mapping in scar-related atrial tachycardia.","authors":"Wenzhi Shen, Tong Pan, Yu Liu, Juan Chen, Jian Bai, Xiang Wu, Zheng Chen, Rongfang Lan, Wei Xu","doi":"10.1111/pace.14994","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>An accurate display of scar-related atrial tachycardia (ATs) is a key determinant of ablation success. The efficacy of ripple mapping (RM) in identifying the mechanism and critical isthmus of scar-related ATs during coherent mapping is unknown.</p><p><strong>Methods: </strong>A total of 97 patients with complex ATs who underwent radiofrequency catheter ablation at our center between October 2018 and September 2022 were included. ATs was mapped using a multielectrode mapping catheter on the CARTO3v7 CONFIDENCE module. Coherent and RM were used to identify the reentrant circuit.</p><p><strong>Results: </strong>The mechanisms of 128 ATs were analyzed retrospectively (84 anatomic-reentrant ATs and 44 non-anatomic reentrant ATs). The median AT cycle length was 264 ± 25ms. The correct diagnosis was achieved in 83 ATs (68%) using only coherent mapping. Through coherent mapping plus RM, 114 ATs (84.2%) were correctly diagnosed (68% vs. 89%, p = .019). In non-anatomical reentrant ATs, 81% of the diagnostic rate was achieved by reviewing both coherent and ripple mapping compared to reviewing coherent mapping alone (81% vs. 52%, p = .03). Reviewing coherent mapping and ripple mapping showed a higher diagnostic rate in patients who underwent cardiac surgery than those with Coherent mapping alone (64% vs. 88%, p = .04).</p><p><strong>Conclusion: </strong>Coherent mapping combined with RM was superior to coherent mapping alone in identifying the mechanism of scar-related ATs post-cardiac surgery and non-anatomic reentrant ATs.</p>","PeriodicalId":54653,"journal":{"name":"Pace-Pacing and Clinical Electrophysiology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pace-Pacing and Clinical Electrophysiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pace.14994","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: An accurate display of scar-related atrial tachycardia (ATs) is a key determinant of ablation success. The efficacy of ripple mapping (RM) in identifying the mechanism and critical isthmus of scar-related ATs during coherent mapping is unknown.
Methods: A total of 97 patients with complex ATs who underwent radiofrequency catheter ablation at our center between October 2018 and September 2022 were included. ATs was mapped using a multielectrode mapping catheter on the CARTO3v7 CONFIDENCE module. Coherent and RM were used to identify the reentrant circuit.
Results: The mechanisms of 128 ATs were analyzed retrospectively (84 anatomic-reentrant ATs and 44 non-anatomic reentrant ATs). The median AT cycle length was 264 ± 25ms. The correct diagnosis was achieved in 83 ATs (68%) using only coherent mapping. Through coherent mapping plus RM, 114 ATs (84.2%) were correctly diagnosed (68% vs. 89%, p = .019). In non-anatomical reentrant ATs, 81% of the diagnostic rate was achieved by reviewing both coherent and ripple mapping compared to reviewing coherent mapping alone (81% vs. 52%, p = .03). Reviewing coherent mapping and ripple mapping showed a higher diagnostic rate in patients who underwent cardiac surgery than those with Coherent mapping alone (64% vs. 88%, p = .04).
Conclusion: Coherent mapping combined with RM was superior to coherent mapping alone in identifying the mechanism of scar-related ATs post-cardiac surgery and non-anatomic reentrant ATs.
期刊介绍:
Pacing and Clinical Electrophysiology (PACE) is the foremost peer-reviewed journal in the field of pacing and implantable cardioversion defibrillation, publishing over 50% of all English language articles in its field, featuring original, review, and didactic papers, and case reports related to daily practice. Articles also include editorials, book reviews, Musings on humane topics relevant to medical practice, electrophysiology (EP) rounds, device rounds, and information concerning the quality of devices used in the practice of the specialty.