{"title":"The coalescent in finite populations with arbitrary, fixed structure","authors":"Benjamin Allen , Alex McAvoy","doi":"10.1016/j.tpb.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>The coalescent is a stochastic process representing ancestral lineages in a population undergoing neutral genetic drift. Originally defined for a well-mixed population, the coalescent has been adapted in various ways to accommodate spatial, age, and class structure, along with other features of real-world populations. To further extend the range of population structures to which coalescent theory applies, we formulate a coalescent process for a broad class of neutral drift models with arbitrary – but fixed – spatial, age, sex, and class structure, haploid or diploid genetics, and any fixed mating pattern. Here, the coalescent is represented as a random sequence of mappings <span><math><mrow><mi>C</mi><mo>=</mo><msubsup><mrow><mfenced><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></mfenced></mrow><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span> from a finite set <span><math><mi>G</mi></math></span> to itself. The set <span><math><mi>G</mi></math></span> represents the “sites” (in individuals, in particular locations and/or classes) at which these alleles can live. The state of the coalescent, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow></math></span>, maps each site <span><math><mrow><mi>g</mi><mo>∈</mo><mi>G</mi></mrow></math></span> to the site containing <span><math><mi>g</mi></math></span>’s ancestor, <span><math><mi>t</mi></math></span> time-steps into the past. Using this representation, we define and analyze coalescence time, coalescence branch length, mutations prior to coalescence, and stationary probabilities of identity-by-descent and identity-by-state. For low mutation, we provide a recipe for computing identity-by-descent and identity-by-state probabilities via the coalescent. Applying our results to a diploid population with arbitrary sex ratio <span><math><mi>r</mi></math></span>, we find that measures of genetic dissimilarity, among any set of sites, are scaled by <span><math><mrow><mn>4</mn><mi>r</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> relative to the even sex ratio case.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 150-169"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000649/pdfft?md5=a09fbbcdb9b66c124896eb3ccc9340db&pid=1-s2.0-S0040580924000649-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000649","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The coalescent is a stochastic process representing ancestral lineages in a population undergoing neutral genetic drift. Originally defined for a well-mixed population, the coalescent has been adapted in various ways to accommodate spatial, age, and class structure, along with other features of real-world populations. To further extend the range of population structures to which coalescent theory applies, we formulate a coalescent process for a broad class of neutral drift models with arbitrary – but fixed – spatial, age, sex, and class structure, haploid or diploid genetics, and any fixed mating pattern. Here, the coalescent is represented as a random sequence of mappings from a finite set to itself. The set represents the “sites” (in individuals, in particular locations and/or classes) at which these alleles can live. The state of the coalescent, , maps each site to the site containing ’s ancestor, time-steps into the past. Using this representation, we define and analyze coalescence time, coalescence branch length, mutations prior to coalescence, and stationary probabilities of identity-by-descent and identity-by-state. For low mutation, we provide a recipe for computing identity-by-descent and identity-by-state probabilities via the coalescent. Applying our results to a diploid population with arbitrary sex ratio , we find that measures of genetic dissimilarity, among any set of sites, are scaled by relative to the even sex ratio case.
凝聚态是一个随机过程,代表了一个种群中发生中性遗传漂移的祖先系谱。凝聚态最初是针对混合良好的种群而定义的,后来经过各种调整,以适应空间结构、年龄结构、阶级结构以及现实世界种群的其他特征。为了进一步扩大凝聚态理论适用的种群结构范围,我们为一大类具有任意但固定的空间、年龄、性别和阶级结构、单倍体或二倍体遗传以及任何固定交配模式的中性漂移模型制定了凝聚态过程。在这里,聚合被表示为从有限集合 G 到自身的随机映射序列[公式:见正文]。集合 G 代表这些等位基因可以存活的 "位点"(个体、特定位置和/或类别)。凝聚状态 Ct:G→G 将每个位点 g∈G 映射到过去 t 个时间步中包含 g 祖先的位点。利用这种表示方法,我们定义并分析了凝聚时间、凝聚分支长度、凝聚前的突变以及按祖先和按状态识别的静态概率。对于低突变,我们提供了通过凝聚计算逐世系同一性和逐状态同一性概率的方法。将我们的结果应用于具有任意性别比 r 的二倍体种群,我们发现相对于偶数性别比的情况,任何一组位点间遗传异质性的测量值都是按 4r(1-r)缩放的。
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.