omicsMIC: a comprehensive benchmarking platform for robust comparison of imputation methods in mass spectrometry-based omics data.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-06-14 eCollection Date: 2024-06-01 DOI:10.1093/nargab/lqae071
Weiqiang Lin, Jiadong Ji, Kuan-Jui Su, Chuan Qiu, Qing Tian, Lan-Juan Zhao, Zhe Luo, Chong Wu, Hui Shen, Hongwen Deng
{"title":"omicsMIC: a comprehensive benchmarking platform for robust comparison of imputation methods in mass spectrometry-based omics data.","authors":"Weiqiang Lin, Jiadong Ji, Kuan-Jui Su, Chuan Qiu, Qing Tian, Lan-Juan Zhao, Zhe Luo, Chong Wu, Hui Shen, Hongwen Deng","doi":"10.1093/nargab/lqae071","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry is a powerful and widely used tool for generating proteomics, lipidomics and metabolomics profiles, which is pivotal for elucidating biological processes and identifying biomarkers. However, missing values in mass spectrometry-based omics data may pose a critical challenge for the comprehensive identification of biomarkers and elucidation of the biological processes underlying human complex disorders. To alleviate this issue, various imputation methods for mass spectrometry-based omics data have been developed. However, a comprehensive comparison of these imputation methods is still lacking, and researchers are frequently confronted with a multitude of options without a clear rationale for method selection. To address this pressing need, we developed omicsMIC (mass spectrometry-based omics with Missing values Imputation methods Comparison platform), an interactive platform that provides researchers with a versatile framework to evaluate the performance of 28 diverse imputation methods. omicsMIC offers a nuanced perspective, acknowledging the inherent heterogeneity in biological data and the unique attributes of each dataset. Our platform empowers researchers to make data-driven decisions in imputation method selection based on real-time visualizations of the outcomes associated with different imputation strategies. The comprehensive benchmarking and versatility of omicsMIC make it a valuable tool for the scientific community engaged in mass spectrometry-based omics research. omicsMIC is freely available at https://github.com/WQLin8/omicsMIC.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 2","pages":"lqae071"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry is a powerful and widely used tool for generating proteomics, lipidomics and metabolomics profiles, which is pivotal for elucidating biological processes and identifying biomarkers. However, missing values in mass spectrometry-based omics data may pose a critical challenge for the comprehensive identification of biomarkers and elucidation of the biological processes underlying human complex disorders. To alleviate this issue, various imputation methods for mass spectrometry-based omics data have been developed. However, a comprehensive comparison of these imputation methods is still lacking, and researchers are frequently confronted with a multitude of options without a clear rationale for method selection. To address this pressing need, we developed omicsMIC (mass spectrometry-based omics with Missing values Imputation methods Comparison platform), an interactive platform that provides researchers with a versatile framework to evaluate the performance of 28 diverse imputation methods. omicsMIC offers a nuanced perspective, acknowledging the inherent heterogeneity in biological data and the unique attributes of each dataset. Our platform empowers researchers to make data-driven decisions in imputation method selection based on real-time visualizations of the outcomes associated with different imputation strategies. The comprehensive benchmarking and versatility of omicsMIC make it a valuable tool for the scientific community engaged in mass spectrometry-based omics research. omicsMIC is freely available at https://github.com/WQLin8/omicsMIC.

omicsMIC:一个综合基准平台,用于对基于质谱的整体组学数据中的估算方法进行稳健比较。
质谱技术是生成蛋白质组学、脂质组学和代谢组学图谱的强大而广泛使用的工具,对于阐明生物过程和确定生物标志物至关重要。然而,基于质谱的组学数据中的缺失值可能会对全面鉴定生物标志物和阐明人类复杂疾病的生物过程构成严峻挑战。为了缓解这一问题,人们开发了各种基于质谱的全局数据估算方法。然而,目前仍缺乏对这些估算方法的全面比较,研究人员经常面临多种选择,却没有明确的方法选择理由。为了满足这一迫切需求,我们开发了 omicsMIC(基于质谱的缺失值归因方法比较平台),这是一个互动平台,为研究人员提供了一个多功能框架,用于评估 28 种不同归因方法的性能。我们的平台使研究人员能够根据不同估算策略相关结果的实时可视化,在选择估算方法时做出数据驱动的决策。omicsMIC 的全面基准性和多功能性使其成为科学界从事基于质谱的组学研究的重要工具。omicsMIC 可在 https://github.com/WQLin8/omicsMIC 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信