Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators.

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Molecular & Cellular Proteomics Pub Date : 2024-08-01 Epub Date: 2024-06-15 DOI:10.1016/j.mcpro.2024.100802
Rathan Jadav, Florian Weiland, Sylvie M Noordermeer, Thomas Carroll, Yuandi Gao, Jianming Wang, Houjiang Zhou, Frederic Lamoliatte, Rachel Toth, Thomas Macartney, Fiona Brown, C James Hastie, Constance Alabert, Haico van Attikum, Frank Zenke, Jean-Yves Masson, John Rouse
{"title":"Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators.","authors":"Rathan Jadav, Florian Weiland, Sylvie M Noordermeer, Thomas Carroll, Yuandi Gao, Jianming Wang, Houjiang Zhou, Frederic Lamoliatte, Rachel Toth, Thomas Macartney, Fiona Brown, C James Hastie, Constance Alabert, Haico van Attikum, Frank Zenke, Jean-Yves Masson, John Rouse","doi":"10.1016/j.mcpro.2024.100802","DOIUrl":null,"url":null,"abstract":"<p><p>The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100802"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100802","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.

用ATR抑制剂berzosertib和gartisertib进行化学磷蛋白组学分析,发现了新的生物标志物和DNA损伤反应调节因子。
ATR 激酶保护细胞免受 DNA 损伤和复制应激,是一个很有前景的抗癌药物靶点。ATR抑制剂(ATRi)berzosertib和gartisertib均已进入临床试验阶段,用于治疗晚期实体瘤,可作为单一疗法或与基因毒性药物联合使用。我们利用优化的质谱分析管道,进行了定量磷酸蛋白组学筛选,以寻找对 berzosertib 和 gartisertib 高度敏感的 ATR 生物标记物。筛选发现了一系列新型 ATR 依赖性磷酸化事件,并将其分为三大类:i) 磷酸化对 ATRi 高度敏感的靶标,它们可能成为新一代 ATR 生物标记物;ii) 具有已知基因组维护作用但以前不知道受 ATR 调节的蛋白质;iii) 细胞作用不明确的新型靶标。第三类靶标代表候选 DNA 损伤应答蛋白,有鉴于此,我们对该类蛋白进行了二次筛选,以确定它们是否被招募到 DNA 损伤位点。我们发现,其中一个被招募的蛋白质 SCAF1 以磷酸依赖的方式与 RNAPII 相互作用,并且招募需要 PARP 活性和与 RNAPII 的相互作用。我们还发现,在缺乏 BRCA1 肿瘤抑制因子的细胞中,SCAF1 的缺失可部分挽救 RAD51 的负载。总之,这些数据揭示了潜在的新 ATR 生物标记物和新的基因组维护因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信