Ulduz Sobhiafshar, Betül Çakici, Erdem Yilmaz, Nalan Yildiz Ayhan, Laila Hedaya, Mustafa Can Ayhan, Cansu Yerinde, Yasemin Begüm Alankuş, H Kübra Gürkaşlar, Elif Nur Firat-Karalar, N C Tolga Emre
{"title":"Interferon regulatory factor 4 modulates epigenetic silencing and cancer-critical pathways in melanoma cells.","authors":"Ulduz Sobhiafshar, Betül Çakici, Erdem Yilmaz, Nalan Yildiz Ayhan, Laila Hedaya, Mustafa Can Ayhan, Cansu Yerinde, Yasemin Begüm Alankuş, H Kübra Gürkaşlar, Elif Nur Firat-Karalar, N C Tolga Emre","doi":"10.1002/1878-0261.13672","DOIUrl":null,"url":null,"abstract":"<p><p>Interferon regulatory factor 4 (IRF4) was initially identified as a key controller in lymphocyte differentiation and function, and subsequently as a dependency factor and therapy target in lymphocyte-derived cancers. In melanocytes, IRF4 takes part in pigmentation. Although genetic studies have implicated IRF4 in melanoma, how IRF4 functions in melanoma cells has remained largely elusive. Here, we confirmed prevalent IRF4 expression in melanoma and showed that high expression is linked to dependency in cells and mortality in patients. Analysis of genes activated by IRF4 uncovered, as a novel target category, epigenetic silencing factors involved in DNA methylation (DNMT1, DNMT3B, UHRF1) and histone H3K27 methylation (EZH2). Consequently, we show that IRF4 controls the expression of tumour suppressor genes known to be silenced by these epigenetic modifications, for instance cyclin-dependent kinase inhibitors CDKN1A and CDKN1B, the PI3-AKT pathway regulator PTEN, and primary cilium components. Furthermore, IRF4 modulates activity of key downstream oncogenic pathways, such as WNT/β-catenin and AKT, impacting cell proliferation and survival. Accordingly, IRF4 modifies the effectiveness of pertinent epigenetic drugs on melanoma cells, a finding that encourages further studies towards therapeutic targeting of IRF4 in melanoma.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2423-2448"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459048/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13672","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Interferon regulatory factor 4 (IRF4) was initially identified as a key controller in lymphocyte differentiation and function, and subsequently as a dependency factor and therapy target in lymphocyte-derived cancers. In melanocytes, IRF4 takes part in pigmentation. Although genetic studies have implicated IRF4 in melanoma, how IRF4 functions in melanoma cells has remained largely elusive. Here, we confirmed prevalent IRF4 expression in melanoma and showed that high expression is linked to dependency in cells and mortality in patients. Analysis of genes activated by IRF4 uncovered, as a novel target category, epigenetic silencing factors involved in DNA methylation (DNMT1, DNMT3B, UHRF1) and histone H3K27 methylation (EZH2). Consequently, we show that IRF4 controls the expression of tumour suppressor genes known to be silenced by these epigenetic modifications, for instance cyclin-dependent kinase inhibitors CDKN1A and CDKN1B, the PI3-AKT pathway regulator PTEN, and primary cilium components. Furthermore, IRF4 modulates activity of key downstream oncogenic pathways, such as WNT/β-catenin and AKT, impacting cell proliferation and survival. Accordingly, IRF4 modifies the effectiveness of pertinent epigenetic drugs on melanoma cells, a finding that encourages further studies towards therapeutic targeting of IRF4 in melanoma.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.