Thank you for attention: A survey on attention-based artificial neural networks for automatic speech recognition

Priyabrata Karmakar , Shyh Wei Teng , Guojun Lu
{"title":"Thank you for attention: A survey on attention-based artificial neural networks for automatic speech recognition","authors":"Priyabrata Karmakar ,&nbsp;Shyh Wei Teng ,&nbsp;Guojun Lu","doi":"10.1016/j.iswa.2024.200406","DOIUrl":null,"url":null,"abstract":"<div><p>Attention is a very popular and effective mechanism in artificial neural network-based sequence-to-sequence models. In this survey paper, a comprehensive review of the different attention models used in developing automatic speech recognition systems is provided. The paper focuses on how attention models have grown and changed for offline and streaming speech recognition in recurrent neural networks and Transformer-based systems.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200406"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000802/pdfft?md5=594f02433cb07a398e883b4ae65168ef&pid=1-s2.0-S2667305324000802-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attention is a very popular and effective mechanism in artificial neural network-based sequence-to-sequence models. In this survey paper, a comprehensive review of the different attention models used in developing automatic speech recognition systems is provided. The paper focuses on how attention models have grown and changed for offline and streaming speech recognition in recurrent neural networks and Transformer-based systems.

感谢您的关注:基于注意力的自动语音识别人工神经网络调查
在基于人工神经网络的序列到序列模型中,注意力是一种非常流行和有效的机制。在这篇调查论文中,我们全面回顾了用于开发自动语音识别系统的不同注意力模型。本文重点介绍了在基于递归神经网络和 Transformer 系统的离线和流式语音识别中,注意力模型是如何发展和变化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信