{"title":"Effect of elevated crossflow temperature on jet primary atomization","authors":"Zhao Gao, Yuying Liu, Guanghai Liu, Quan Zhang","doi":"10.1016/j.expthermflusci.2024.111254","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid jet in hot gas crossflow is widely employed in industrial combustion devices, especially in the propulsion systems. In this work, the effect of elevated crossflow temperature on the primary atomization of a liquid jet is experimentally investigated, including breakup regime, surface wavelength, column breakup height, and near-field trajectory. The experiments are conducted at crossflow temperatures of 300 K and 500 K, with gas Weber number ranging from 8.82 to 67.55 and momentum flux ratio from 10 to 50. The gas Weber number and momentum flux ratio are kept constant via increasing the crossflow velocity when crossflow temperature increases. The results show that the elevated crossflow temperature weakens surface breakup, particularly at high momentum flux ratios, which makes the transition of breakup regime from column breakup to surface breakup require higher gas Weber number or momentum flux ratio. Besides, the elevated crossflow temperature leads to a slight increase in surface wavelength, column breakup height and near-field trajectory, with the increase in trajectory being more pronounced at lower gas Weber numbers. Finally, an empirical correlation for the near-field trajectory is obtained, including the effects of crossflow temperature, gas Weber number, and momentum flux ratio.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"158 ","pages":"Article 111254"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001237","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid jet in hot gas crossflow is widely employed in industrial combustion devices, especially in the propulsion systems. In this work, the effect of elevated crossflow temperature on the primary atomization of a liquid jet is experimentally investigated, including breakup regime, surface wavelength, column breakup height, and near-field trajectory. The experiments are conducted at crossflow temperatures of 300 K and 500 K, with gas Weber number ranging from 8.82 to 67.55 and momentum flux ratio from 10 to 50. The gas Weber number and momentum flux ratio are kept constant via increasing the crossflow velocity when crossflow temperature increases. The results show that the elevated crossflow temperature weakens surface breakup, particularly at high momentum flux ratios, which makes the transition of breakup regime from column breakup to surface breakup require higher gas Weber number or momentum flux ratio. Besides, the elevated crossflow temperature leads to a slight increase in surface wavelength, column breakup height and near-field trajectory, with the increase in trajectory being more pronounced at lower gas Weber numbers. Finally, an empirical correlation for the near-field trajectory is obtained, including the effects of crossflow temperature, gas Weber number, and momentum flux ratio.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.