Nektarios A. Valous;Eckhard Hitzer;Salvatore Vitabile;Swanhild Bernstein;Carlile Lavor;Derek Abbott;Maria Elena Luna-Elizarrarás;Wilder Lopes
{"title":"Hypercomplex Signal and Image Processing: Part 1 [From the Guest Editors]","authors":"Nektarios A. Valous;Eckhard Hitzer;Salvatore Vitabile;Swanhild Bernstein;Carlile Lavor;Derek Abbott;Maria Elena Luna-Elizarrarás;Wilder Lopes","doi":"10.1109/MSP.2024.3378129","DOIUrl":null,"url":null,"abstract":"Novel computational signal and image analysis methodologies based on feature-rich mathematical/computational frameworks continue to push the limits of the technological envelope, thus providing optimized and efficient solutions. Hypercomplex signal and image processing is a fascinating field that extends conventional methods by using hypercomplex numbers in a unified framework for algebra and geometry. Methodologies that are developed within this field can lead to more effective and powerful ways to analyze signals and images. Processing audio, video, images, and other types of data in the hypercomplex domain allows for more complex and intuitive representations with algebraic properties that can lead to new insights and optimizations. Applications in image processing, signal filtering, and deep learning (just to name a few) have shown that working in the hypercomplex domain can lead to more efficient and robust outcomes. As research in this field progresses and software tools become more widely available, we can expect to see increasingly sophisticated applications in many areas of research, e.g., computer vision, machine learning, and so on.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 2","pages":"11-13"},"PeriodicalIF":9.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10558747","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10558747/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Novel computational signal and image analysis methodologies based on feature-rich mathematical/computational frameworks continue to push the limits of the technological envelope, thus providing optimized and efficient solutions. Hypercomplex signal and image processing is a fascinating field that extends conventional methods by using hypercomplex numbers in a unified framework for algebra and geometry. Methodologies that are developed within this field can lead to more effective and powerful ways to analyze signals and images. Processing audio, video, images, and other types of data in the hypercomplex domain allows for more complex and intuitive representations with algebraic properties that can lead to new insights and optimizations. Applications in image processing, signal filtering, and deep learning (just to name a few) have shown that working in the hypercomplex domain can lead to more efficient and robust outcomes. As research in this field progresses and software tools become more widely available, we can expect to see increasingly sophisticated applications in many areas of research, e.g., computer vision, machine learning, and so on.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.