Mehdi Hosseinzadeh , Jawad Tanveer , Faisal Alanazi , Khursheed Aurangzeb , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Aso Darwesh , Sang-Woong Lee , Amir Masoud Rahmani
{"title":"An intelligent clustering scheme based on whale optimization algorithm in flying ad hoc networks","authors":"Mehdi Hosseinzadeh , Jawad Tanveer , Faisal Alanazi , Khursheed Aurangzeb , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Aso Darwesh , Sang-Woong Lee , Amir Masoud Rahmani","doi":"10.1016/j.vehcom.2024.100805","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the progress of unmanned aerial vehicles (UAVs), this new technology is widely applied in military and civilian areas. Multi-UAV networks are often known as flying ad hoc networks (FANETs). Due to these applications, FANET must ensure communication stability and have high scalability. These goals are achieved by presenting clustering techniques in FANETs. However, the characteristics of these networks, like high-mobility nodes, limited energy, and dynamic topology, have created great challenges in two important processes of clustering protocols, namely cluster construction and the selection of cluster heads. In this paper, an intelligent clustering scheme based on the whale optimization algorithm called ICW is suggested in flying ad hoc networks. Firstly, each UAV specifies its hello interval based on the lifespan of adjacent links to guarantee the adaptability of ICW to FANET. Then, a centralized clustering process is done using a whale optimization algorithm (WOA) to find the best cluster centers on the network. To determine the membership of each UAV in a cluster, ICW employs a new criterion, i.e. closeness ratio, so that each UAV joins a cluster with the best closeness ratio. In addition, the evaluation of each whale is carried out based on a fitness function, consisting of three components, namely the number of isolated clusters, the ratio of inter-cluster distance to intra-cluster distance, and cluster size. Then, a cluster head is selected for each cluster based on a score value. This score is dependent on the weighted sum of four metrics, namely remaining energy, the average link lifespan between each UAV and its neighbors, neighbor degree, and the average distance between each UAV and its neighbors. In the last step, two routing processes, namely intra-cluster routing and inter-cluster routing, are introduced in FANET. Then, the evaluation and implementation of ICW is performed through the NS2 simulator. After completing the simulation process, ICW is compared to MWCRSF, DCM, and GWO, and the evaluation results are presented in two scenarios, namely network evaluation in the clustering process and network evaluation in the routing process. Accordingly, in the first scenario, ICW has low clustering time and a high cluster lifetime. In the second scenario, ICW optimizes energy consumption, network longevity, packet delivery rate, routing overhead, and delay compared to other approaches. However, throughput in ICW is about 3.9% lower than that in MWCRSF.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000809","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the progress of unmanned aerial vehicles (UAVs), this new technology is widely applied in military and civilian areas. Multi-UAV networks are often known as flying ad hoc networks (FANETs). Due to these applications, FANET must ensure communication stability and have high scalability. These goals are achieved by presenting clustering techniques in FANETs. However, the characteristics of these networks, like high-mobility nodes, limited energy, and dynamic topology, have created great challenges in two important processes of clustering protocols, namely cluster construction and the selection of cluster heads. In this paper, an intelligent clustering scheme based on the whale optimization algorithm called ICW is suggested in flying ad hoc networks. Firstly, each UAV specifies its hello interval based on the lifespan of adjacent links to guarantee the adaptability of ICW to FANET. Then, a centralized clustering process is done using a whale optimization algorithm (WOA) to find the best cluster centers on the network. To determine the membership of each UAV in a cluster, ICW employs a new criterion, i.e. closeness ratio, so that each UAV joins a cluster with the best closeness ratio. In addition, the evaluation of each whale is carried out based on a fitness function, consisting of three components, namely the number of isolated clusters, the ratio of inter-cluster distance to intra-cluster distance, and cluster size. Then, a cluster head is selected for each cluster based on a score value. This score is dependent on the weighted sum of four metrics, namely remaining energy, the average link lifespan between each UAV and its neighbors, neighbor degree, and the average distance between each UAV and its neighbors. In the last step, two routing processes, namely intra-cluster routing and inter-cluster routing, are introduced in FANET. Then, the evaluation and implementation of ICW is performed through the NS2 simulator. After completing the simulation process, ICW is compared to MWCRSF, DCM, and GWO, and the evaluation results are presented in two scenarios, namely network evaluation in the clustering process and network evaluation in the routing process. Accordingly, in the first scenario, ICW has low clustering time and a high cluster lifetime. In the second scenario, ICW optimizes energy consumption, network longevity, packet delivery rate, routing overhead, and delay compared to other approaches. However, throughput in ICW is about 3.9% lower than that in MWCRSF.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.