{"title":"Posets of copies of countable ultrahomogeneous tournaments","authors":"Miloš S. Kurilić , Stevo Todorčević","doi":"10.1016/j.apal.2024.103486","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>poset of copies</em> of a relational structure <span><math><mi>X</mi></math></span> is the partial order <span><math><mi>P</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>〈</mo><mo>{</mo><mi>Y</mi><mo>⊂</mo><mi>X</mi><mo>:</mo><mi>Y</mi><mo>≅</mo><mi>X</mi><mo>}</mo><mo>,</mo><mo>⊂</mo><mo>〉</mo></math></span> and each similarity of such posets (e.g. isomorphism, forcing equivalence = isomorphism of Boolean completions, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>:</mo><mo>=</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mrow><mi>sq</mi></mrow><mspace></mspace><mi>P</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>) determines a classification of structures. Here we consider the structures from Lachlan's list of countable ultrahomogeneous tournaments: <span><math><mi>Q</mi></math></span> (the rational line), <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span> (the circular tournament), and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> (the countable homogeneous universal tournament); as well as the ultrahomogeneous digraphs <span><math><mi>S</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><mi>Q</mi><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> from Cherlin's list.</p><p>If <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub></math></span> (resp. <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denotes the countable homogeneous universal graph (resp. <em>n</em>-labeled linear order), it turns out that <span><math><mi>P</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>)</mo><mo>≅</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub><mo>)</mo></math></span> and that <span><math><mi>P</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> densely embeds in <span><math><mi>P</mi><mo>(</mo><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, for <span><math><mi>n</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>.</p><p>Consequently, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≅</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mo>(</mo><mi>S</mi><mo>⁎</mo><mi>π</mi><mo>)</mo></math></span>, where <span><math><mi>S</mi></math></span> is the poset of perfect subsets of <span><math><mi>R</mi></math></span> and <em>π</em> an <span><math><mi>S</mi></math></span>-name such that <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi></math></span> is a separative, atomless and <em>σ</em>-closed forcing” (thus <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi><msub><mrow><mo>≡</mo></mrow><mrow><mi>f</mi><mi>o</mi><mi>r</mi><mi>c</mi></mrow></msub><msup><mrow><mo>(</mo><mi>P</mi><mo>(</mo><mi>ω</mi><mo>)</mo><mo>/</mo><mrow><mi>Fin</mi></mrow><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span>”, under CH), whenever <span><math><mi>X</mi></math></span> is a countable structure equimorphic with <span><math><mi>Q</mi></math></span>, <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mi>S</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><mi>Q</mi><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> or <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>.</p><p>Also, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>≅</mo><mrow><mi>ro</mi></mrow><mspace></mspace><mo>(</mo><mi>S</mi><mo>⁎</mo><mi>π</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>S</mi></mrow></msub><mo>⊩</mo><mtext>“</mtext><mi>π</mi></math></span> is an <em>ω</em>-distributive forcing”, whenever <span><math><mi>X</mi></math></span> is a countable graph containing a copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Rado</mi></mrow></msub></math></span>, or a countable tournament containing a copy of <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, or <span><math><mi>X</mi><mo>=</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>[</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 10","pages":"Article 103486"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000903","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
The poset of copies of a relational structure is the partial order and each similarity of such posets (e.g. isomorphism, forcing equivalence = isomorphism of Boolean completions, ) determines a classification of structures. Here we consider the structures from Lachlan's list of countable ultrahomogeneous tournaments: (the rational line), (the circular tournament), and (the countable homogeneous universal tournament); as well as the ultrahomogeneous digraphs , , and from Cherlin's list.
If (resp. ) denotes the countable homogeneous universal graph (resp. n-labeled linear order), it turns out that and that densely embeds in , for .
Consequently, , where is the poset of perfect subsets of and π an -name such that is a separative, atomless and σ-closed forcing” (thus ”, under CH), whenever is a countable structure equimorphic with , , , , or .
Also, , where is an ω-distributive forcing”, whenever is a countable graph containing a copy of , or a countable tournament containing a copy of , or .
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.