{"title":"Around definable types in p-adically closed fields","authors":"Pablo Andújar Guerrero , Will Johnson","doi":"10.1016/j.apal.2024.103484","DOIUrl":null,"url":null,"abstract":"<div><p>We prove some technical results on definable types in <em>p</em>-adically closed fields, with consequences for definable groups and definable topological spaces. First, the code of a definable <em>n</em>-type (in the field sort) can be taken to be a real tuple (in the field sort) rather than an imaginary tuple (in the geometric sorts). Second, any definable type in the real or imaginary sorts is generated by a countable union of chains parameterized by the value group. Third, if <em>X</em> is an interpretable set, then the space of global definable types on <em>X</em> is strictly pro-interpretable, building off work of Cubides Kovacsics, Hils, and Ye <span>[7]</span>, <span>[8]</span>. Fourth, global definable types can be lifted (in a non-canonical way) along interpretable surjections. Fifth, if <em>G</em> is a definable group with definable f-generics (<em>dfg</em>), and <em>G</em> acts on a definable set <em>X</em>, then the quotient space <span><math><mi>X</mi><mo>/</mo><mi>G</mi></math></span> is definable, not just interpretable. This explains some phenomena observed by Pillay and Yao <span>[24]</span>. Lastly, we show that interpretable topological spaces satisfy analogues of first-countability and curve selection. Using this, we show that all reasonable notions of definable compactness agree on interpretable topological spaces, and that definable compactness is definable in families.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove some technical results on definable types in p-adically closed fields, with consequences for definable groups and definable topological spaces. First, the code of a definable n-type (in the field sort) can be taken to be a real tuple (in the field sort) rather than an imaginary tuple (in the geometric sorts). Second, any definable type in the real or imaginary sorts is generated by a countable union of chains parameterized by the value group. Third, if X is an interpretable set, then the space of global definable types on X is strictly pro-interpretable, building off work of Cubides Kovacsics, Hils, and Ye [7], [8]. Fourth, global definable types can be lifted (in a non-canonical way) along interpretable surjections. Fifth, if G is a definable group with definable f-generics (dfg), and G acts on a definable set X, then the quotient space is definable, not just interpretable. This explains some phenomena observed by Pillay and Yao [24]. Lastly, we show that interpretable topological spaces satisfy analogues of first-countability and curve selection. Using this, we show that all reasonable notions of definable compactness agree on interpretable topological spaces, and that definable compactness is definable in families.
我们证明了 p-adically closed fields 中可定义类型的一些技术结果,这些结果对可定义群和可定义拓扑空间都有影响。首先,可定义 n 型的代码(在字段排序中)可以被视为实元组(在字段排序中),而不是虚元组(在几何排序中)。其次,在实排序或虚排序中,任何可定义类型都是由值组参数化的链的可数联盟生成的。第三,如果 X 是一个可解释集合,那么 X 上的全局可定义类型空间严格来说是亲可解释的,这是建立在 Cubides Kovacsics、Hils 和 Ye [7], [8] 的工作基础之上的。第四,全局可定义类型可以(以非规范的方式)沿着可解释的投射提升。第五,如果 G 是具有可定义 f 元(dfg)的可定义群,并且 G 作用于可定义集合 X,那么商空间 X/G 是可定义的,而不仅仅是可解释的。这解释了 Pillay 和 Yao [24] 观察到的一些现象。最后,我们证明可解释拓扑空间满足第一可数性和曲线选择的类似条件。由此,我们证明了可定义紧凑性的所有合理概念都与可解释拓扑空间一致,而且可定义紧凑性在族中是可定义的。