Predictive modeling in geoarchaeology: An evaluation of machine learning algorithms and topographic variables on the Serranópolis City - Brazil

Q1 Social Sciences
Alessandra Cristina Pereira , Édipo H. Cremon , Rosiclér Theodoro da Silva , e Julio Cezar Rubin de Rubin
{"title":"Predictive modeling in geoarchaeology: An evaluation of machine learning algorithms and topographic variables on the Serranópolis City - Brazil","authors":"Alessandra Cristina Pereira ,&nbsp;Édipo H. Cremon ,&nbsp;Rosiclér Theodoro da Silva ,&nbsp;e Julio Cezar Rubin de Rubin","doi":"10.1016/j.daach.2024.e00350","DOIUrl":null,"url":null,"abstract":"<div><p>The search for predictive models in archaeology using geographical data and artificial intelligence (AI) has made progress, but there is a scarcity of studies focusing on South America. Serranópolis, in Goiás, Central-West Brazil, emerges as an ideal landscapefor applying AI and geographical data to predict archaeological sites. This study aimed to predict potential archaeological locations in Serranópolis using topographic variables and four supervised classification algorithms: C5.0, Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Gradient Boosting Machine (GBM). The methodology involved sample points representing open-air archaeological sites and rock shelters, along with randomly selected pseudo-absence samples. Eighteen topographic variables from a digital elevation model were considered. RF outperformed other algorithms, producing a probability map of site occurrence. Key predictors included sky view factor, roughness, topographic depression, and slope. The findings enhance our understanding of archaeological potential in this region, highlighting the effectiveness of RF in predictive modeling.</p></div>","PeriodicalId":38225,"journal":{"name":"Digital Applications in Archaeology and Cultural Heritage","volume":"34 ","pages":"Article e00350"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Applications in Archaeology and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212054824000353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The search for predictive models in archaeology using geographical data and artificial intelligence (AI) has made progress, but there is a scarcity of studies focusing on South America. Serranópolis, in Goiás, Central-West Brazil, emerges as an ideal landscapefor applying AI and geographical data to predict archaeological sites. This study aimed to predict potential archaeological locations in Serranópolis using topographic variables and four supervised classification algorithms: C5.0, Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Gradient Boosting Machine (GBM). The methodology involved sample points representing open-air archaeological sites and rock shelters, along with randomly selected pseudo-absence samples. Eighteen topographic variables from a digital elevation model were considered. RF outperformed other algorithms, producing a probability map of site occurrence. Key predictors included sky view factor, roughness, topographic depression, and slope. The findings enhance our understanding of archaeological potential in this region, highlighting the effectiveness of RF in predictive modeling.

地质考古学中的预测模型:对巴西塞拉诺波利斯市机器学习算法和地形变量的评估
利用地理数据和人工智能(AI)在考古学中寻找预测模型的工作取得了进展,但以南美洲为重点的研究却很少。巴西中西部戈亚斯州的塞拉诺波利斯是应用人工智能和地理数据预测考古遗址的理想地点。本研究旨在利用地形变量和四种监督分类算法预测塞拉诺波利斯的潜在考古地点:C5.0、随机森林(RF)、极端梯度提升(XGBoost)和梯度提升机(GBM)。该方法涉及代表露天考古遗址和岩洞的样本点,以及随机选择的伪缺失样本。考虑了数字高程模型中的 18 个地形变量。射频法的性能优于其他算法,能绘制出遗址出现的概率图。主要预测因素包括天空视角系数、粗糙度、地形凹陷和坡度。这些发现增强了我们对该地区考古潜力的了解,突出了 RF 在预测建模中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信