Basil H. Chaballout BA , Kyra N. McComas MD , Mohamed Khattab MD , Gabrielle P. Seymore MS, DABR , Stephen K. Martinez PhD , Guozhen Luo MS , Austin Kirschner MD, PhD , Leo Y. Luo MD
{"title":"Dosimetric Advantage of Combined IMRT for Whole Lung and Abdomen Irradiation for Wilms Tumor","authors":"Basil H. Chaballout BA , Kyra N. McComas MD , Mohamed Khattab MD , Gabrielle P. Seymore MS, DABR , Stephen K. Martinez PhD , Guozhen Luo MS , Austin Kirschner MD, PhD , Leo Y. Luo MD","doi":"10.1016/j.adro.2024.101527","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>In patients with Wilms tumor with lung metastases, a cardiac-sparing intensity modulated radiation therapy (CS-IMRT) technique is increasingly being adopted for whole lung irradiation. However, the standard technique for flank and whole abdomen radiation remains 2-dimensional anterioposterior (AP), and overlap at the junction between the whole lung CS-IMRT and abdominal AP fields can result in overdose to normal organs. Here, we compared the dosimetry of patients who received whole lung irradiation and flank or abdominal radiation therapy with CS-IMRT with AP abdominal field (IMRT-AP) versus CS-IMRT with IMRT abdominal field (combined IMRT).</p></div><div><h3>Methods and Materials</h3><p>We retrospectively reviewed the radiation plans of 2 patients with Wilms tumor who received CS-IMRT and flank or whole abdomen irradiation with a combined IMRT approach. Comparison IMRT-AP plans were generated with equivalent target coverage of 95% receiving the prescribed dose. Maximum doses to normal organs were compared at the junctional overlap.</p></div><div><h3>Results</h3><p>Overlap at the junction between CS-IMRT and abdominal fields resulted in a significantly lower dose with combined IMRT plans compared with IMRT-AP plan. Differences in maximum doses (in cGy) to normal organs between combined IMRT versus IMRT-AP plans were most significant in the vertebral body (patient 1 = 1277 vs 2065; patient 2 = 1334 vs 2287), lungs (patient 1 = 1298 vs 2081; patient 2 = 1234 vs 1820), spinal cord (patient 1 = 1235 vs 1975; patient 2 = 1345 vs 2253), stomach (patient 1 = 1264 vs 1977; patient 2 = 1118 vs 2062), and liver (patient 1 = 1297 vs 1889; patient 2 = 1334 vs 2237).</p></div><div><h3>Conclusions</h3><p>The combined IMRT approach for Wilms patients who require whole lung and abdomen irradiation can provide more uniform dose distribution in the junction area and significantly lower doses to normal organs at the junctional overlap.</p></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"9 8","pages":"Article 101527"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452109424000903/pdfft?md5=573984a7ab83d6b2b2cf567c336fd4b0&pid=1-s2.0-S2452109424000903-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452109424000903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
In patients with Wilms tumor with lung metastases, a cardiac-sparing intensity modulated radiation therapy (CS-IMRT) technique is increasingly being adopted for whole lung irradiation. However, the standard technique for flank and whole abdomen radiation remains 2-dimensional anterioposterior (AP), and overlap at the junction between the whole lung CS-IMRT and abdominal AP fields can result in overdose to normal organs. Here, we compared the dosimetry of patients who received whole lung irradiation and flank or abdominal radiation therapy with CS-IMRT with AP abdominal field (IMRT-AP) versus CS-IMRT with IMRT abdominal field (combined IMRT).
Methods and Materials
We retrospectively reviewed the radiation plans of 2 patients with Wilms tumor who received CS-IMRT and flank or whole abdomen irradiation with a combined IMRT approach. Comparison IMRT-AP plans were generated with equivalent target coverage of 95% receiving the prescribed dose. Maximum doses to normal organs were compared at the junctional overlap.
Results
Overlap at the junction between CS-IMRT and abdominal fields resulted in a significantly lower dose with combined IMRT plans compared with IMRT-AP plan. Differences in maximum doses (in cGy) to normal organs between combined IMRT versus IMRT-AP plans were most significant in the vertebral body (patient 1 = 1277 vs 2065; patient 2 = 1334 vs 2287), lungs (patient 1 = 1298 vs 2081; patient 2 = 1234 vs 1820), spinal cord (patient 1 = 1235 vs 1975; patient 2 = 1345 vs 2253), stomach (patient 1 = 1264 vs 1977; patient 2 = 1118 vs 2062), and liver (patient 1 = 1297 vs 1889; patient 2 = 1334 vs 2237).
Conclusions
The combined IMRT approach for Wilms patients who require whole lung and abdomen irradiation can provide more uniform dose distribution in the junction area and significantly lower doses to normal organs at the junctional overlap.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.