{"title":"Low-rank tensor regression for selection of grouped variables","authors":"Yang Chen, Ziyan Luo, Lingchen Kong","doi":"10.1016/j.jmva.2024.105339","DOIUrl":null,"url":null,"abstract":"<div><p>Low-rank tensor regression (LRTR) problems are widely studied in statistics and machine learning, in which the regressors are generally grouped by clustering strongly correlated variables or variables corresponding to different levels of the same predictive factor in many practical applications. By virtue of the idea of group selection in the classical linear regression framework, we propose an LRTR method for adaptive selection of grouped variables in this article, which is formulated as a group SLOPE penalized low-rank, orthogonally decomposable tensor optimization problem. Moreover, we introduce the notion of tensor group false discovery rate (TgFDR) to measure the group selection performance. The proposed regression method provably controls TgFDR and achieves the asymptotically minimax estimate under the assumption that variable groups are orthogonal to each other. Finally, an alternating minimization algorithm is developed for efficient problem resolution. We demonstrate the performance of our proposed method in group selection and low-rank estimation through simulation studies and real dataset analysis.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000460","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-rank tensor regression (LRTR) problems are widely studied in statistics and machine learning, in which the regressors are generally grouped by clustering strongly correlated variables or variables corresponding to different levels of the same predictive factor in many practical applications. By virtue of the idea of group selection in the classical linear regression framework, we propose an LRTR method for adaptive selection of grouped variables in this article, which is formulated as a group SLOPE penalized low-rank, orthogonally decomposable tensor optimization problem. Moreover, we introduce the notion of tensor group false discovery rate (TgFDR) to measure the group selection performance. The proposed regression method provably controls TgFDR and achieves the asymptotically minimax estimate under the assumption that variable groups are orthogonal to each other. Finally, an alternating minimization algorithm is developed for efficient problem resolution. We demonstrate the performance of our proposed method in group selection and low-rank estimation through simulation studies and real dataset analysis.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.