Advancing selective breeding in leopard coral grouper (P. leopardus) through development of a high-throughput image-based growth trait

Yangfan Wang , Chun Xin , Yurui Gao , Peiyu Li , Mingyi Wang , Shaoxuan Wu , Chaofan Jin , Lingling Zhang , Bo Wang , Zhenmin Bao , Jingjie Hu
{"title":"Advancing selective breeding in leopard coral grouper (P. leopardus) through development of a high-throughput image-based growth trait","authors":"Yangfan Wang ,&nbsp;Chun Xin ,&nbsp;Yurui Gao ,&nbsp;Peiyu Li ,&nbsp;Mingyi Wang ,&nbsp;Shaoxuan Wu ,&nbsp;Chaofan Jin ,&nbsp;Lingling Zhang ,&nbsp;Bo Wang ,&nbsp;Zhenmin Bao ,&nbsp;Jingjie Hu","doi":"10.1016/j.agrcom.2024.100042","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing image-based computer vision techniques, many high-throughput phenotyping methods have been employed to capture intricate growth trait characteristics, offering reliable estimates of phenotypic traits crucial for breeding programs. In this study, we explored the application of partial differential equation (PDE)-based level set approaches to introduce image-based body area percentage (IBAP) as a novel growth trait in <em>Plectropomus leopardus</em>, as a substitution for the traditional growth trait body weight (BW). Assessing the genetic parameters essential for robust growth trait improvement in <em>P. leopardus</em> breeding programs, we estimated SNP-based heritability for IBAP and BW using a comprehensive set of SNPs (673,039 SNPs with MAF &gt;2%). Results revealed heritability estimates of 0.515 (S.E. 0.06) for IBAP and 0.542 (S.E. 0.06) for BW. Moreover, strong phenotypic and genetic correlations of 0.812 (S.E. 0.001) and 0.903 (S.E 0.021) between IBAP and BW, respectively, underscored the potential for IBAP as a surrogate trait of BW for the genetic improvement of <em>P. leopardus</em>. We established a linear regression model of IBAP and BW (y ​= ​−730 ​+ ​1700×, (R<sup>2</sup> ​= ​0.71)), after rigorous assessments of linearity, normality, and homoscedasticity, to confirm model fit. Evaluation of breeding value prediction accuracies using two linear models (rr-GBLUP and Bayes B) and a non-linear (RKHS) model demonstrated the superior performance of RKHS across IBAP and BW. Exploring the impact of varied marker densities for SNP selection on genomic prediction accuracy for IBAP and BW demonstrated a threshold of 10,000 SNPs for maximal model accuracy. These findings provide essential reference information and methodological groundwork for leveraging image-based traits in <em>P. leopardus</em> breeding endeavors, facilitating more efficient and precise genetic improvement programs.</p></div>","PeriodicalId":100065,"journal":{"name":"Agriculture Communications","volume":"2 2","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949798124000188/pdfft?md5=fe454426c17559ddc45aed368ade56cc&pid=1-s2.0-S2949798124000188-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949798124000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing image-based computer vision techniques, many high-throughput phenotyping methods have been employed to capture intricate growth trait characteristics, offering reliable estimates of phenotypic traits crucial for breeding programs. In this study, we explored the application of partial differential equation (PDE)-based level set approaches to introduce image-based body area percentage (IBAP) as a novel growth trait in Plectropomus leopardus, as a substitution for the traditional growth trait body weight (BW). Assessing the genetic parameters essential for robust growth trait improvement in P. leopardus breeding programs, we estimated SNP-based heritability for IBAP and BW using a comprehensive set of SNPs (673,039 SNPs with MAF >2%). Results revealed heritability estimates of 0.515 (S.E. 0.06) for IBAP and 0.542 (S.E. 0.06) for BW. Moreover, strong phenotypic and genetic correlations of 0.812 (S.E. 0.001) and 0.903 (S.E 0.021) between IBAP and BW, respectively, underscored the potential for IBAP as a surrogate trait of BW for the genetic improvement of P. leopardus. We established a linear regression model of IBAP and BW (y ​= ​−730 ​+ ​1700×, (R2 ​= ​0.71)), after rigorous assessments of linearity, normality, and homoscedasticity, to confirm model fit. Evaluation of breeding value prediction accuracies using two linear models (rr-GBLUP and Bayes B) and a non-linear (RKHS) model demonstrated the superior performance of RKHS across IBAP and BW. Exploring the impact of varied marker densities for SNP selection on genomic prediction accuracy for IBAP and BW demonstrated a threshold of 10,000 SNPs for maximal model accuracy. These findings provide essential reference information and methodological groundwork for leveraging image-based traits in P. leopardus breeding endeavors, facilitating more efficient and precise genetic improvement programs.

通过开发基于高通量图像的生长性状,推进豹纹珊瑚石斑鱼(P. leopardus)的选育工作
利用基于图像的计算机视觉技术,许多高通量表型分析方法已被用于捕捉复杂的生长性状特征,为育种计划提供可靠的表型性状估计。在本研究中,我们探索了基于偏微分方程(PDE)的水平集方法的应用,以引入基于图像的体面积百分比(IBAP)作为豹猫的新型生长性状,以替代传统的生长性状体重(BW)。为了评估豹猫育种计划中对生长性状进行稳健改良所必需的遗传参数,我们使用一组全面的 SNPs(673,039 个 SNPs,MAF >2%)估算了基于 SNP 的 IBAP 和 BW 遗传率。结果显示,IBAP 的遗传率估计值为 0.515(S.E. 0.06),体重的遗传率估计值为 0.542(S.E. 0.06)。此外,IBAP 和体重之间分别有 0.812(S.E. 0.001)和 0.903(S.E. 0.021)的强表型相关性和遗传相关性,这突出表明 IBAP 有可能作为体重的替代性状用于豹猫的遗传改良。我们建立了 IBAP 与体重的线性回归模型(y = -730 + 1700×,(R2 = 0.71)),并对线性、正态和同方差进行了严格评估,以确认模型的拟合度。使用两个线性模型(rr-GBLUP 和 Bayes B)和一个非线性模型(RKHS)对育种值预测准确性进行评估,结果表明 RKHS 在 IBAP 和 BW 中表现优异。探索不同标记密度的 SNP 选择对 IBAP 和 BW 基因组预测准确性的影响,结果表明 10,000 个 SNP 是模型准确性最高的阈值。这些研究结果为在豹猫育种工作中利用基于图像的性状提供了重要的参考信息和方法论基础,促进了更高效、更精确的遗传改良计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信