Layer sparsity in neural networks

Pub Date : 2024-06-09 DOI:10.1016/j.jspi.2024.106195
Mohamed Hebiri , Johannes Lederer , Mahsa Taheri
{"title":"Layer sparsity in neural networks","authors":"Mohamed Hebiri ,&nbsp;Johannes Lederer ,&nbsp;Mahsa Taheri","doi":"10.1016/j.jspi.2024.106195","DOIUrl":null,"url":null,"abstract":"<div><p>Sparsity has become popular in machine learning because it can save computational resources, facilitate interpretations, and prevent overfitting. This paper discusses sparsity in the framework of neural networks. In particular, we formulate a new notion of sparsity, called layer sparsity, that concerns the networks’ layers and, therefore, aligns particularly well with the current trend toward deep networks. We then introduce corresponding regularization and refitting schemes that can complement standard deep-learning pipelines to generate more compact and accurate networks.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000521/pdfft?md5=b1aa1392925da05f5ac50fc5d4831546&pid=1-s2.0-S0378375824000521-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparsity has become popular in machine learning because it can save computational resources, facilitate interpretations, and prevent overfitting. This paper discusses sparsity in the framework of neural networks. In particular, we formulate a new notion of sparsity, called layer sparsity, that concerns the networks’ layers and, therefore, aligns particularly well with the current trend toward deep networks. We then introduce corresponding regularization and refitting schemes that can complement standard deep-learning pipelines to generate more compact and accurate networks.

分享
查看原文
神经网络中的层稀疏性
稀疏性在机器学习中很受欢迎,因为它可以节省计算资源、方便解释并防止过度拟合。本文讨论神经网络框架下的稀疏性。特别是,我们提出了一种新的稀疏性概念,称为层稀疏性,它与网络的层有关,因此特别符合当前的深度网络趋势。然后,我们介绍了相应的正则化和重拟合方案,这些方案可以补充标准深度学习管道,生成更紧凑、更精确的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信