Doubly Robust Augmented Model Accuracy Transfer Inference with High Dimensional Features

IF 3 1区 数学 Q1 STATISTICS & PROBABILITY
Doudou Zhou, Molei Liu, Mengyan Li, Tianxi Cai
{"title":"Doubly Robust Augmented Model Accuracy Transfer Inference with High Dimensional Features","authors":"Doudou Zhou, Molei Liu, Mengyan Li, Tianxi Cai","doi":"10.1080/01621459.2024.2356291","DOIUrl":null,"url":null,"abstract":"Transfer learning is crucial for training models that generalize to unlabeled target populations using labeled source data, especially in real-world studies where label scarcity and covariate shift...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"2 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2024.2356291","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Transfer learning is crucial for training models that generalize to unlabeled target populations using labeled source data, especially in real-world studies where label scarcity and covariate shift...
具有高维特征的双稳健增强模型精度转移推理
迁移学习对于利用带标记的源数据训练可泛化到无标记目标人群的模型至关重要,尤其是在现实世界的研究中,因为在现实世界中,标记稀缺且共变因素会发生变化...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
8.10%
发文量
168
审稿时长
12 months
期刊介绍: Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA . JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信