Electrical detection of mobile skyrmions with 100% tunneling magnetoresistance in a racetrack-like device

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mengqi Zhao, Aitian Chen, Pei-Yuan Huang, Chen Liu, Laichuan Shen, Jiahao Liu, Le Zhao, Bin Fang, Wen-Cheng Yue, Dongxing Zheng, Ledong Wang, Hao Bai, Ka Shen, Yan Zhou, Shasha Wang, Enlong Liu, Shikun He, Yong-Lei Wang, Xixiang Zhang, Wanjun Jiang
{"title":"Electrical detection of mobile skyrmions with 100% tunneling magnetoresistance in a racetrack-like device","authors":"Mengqi Zhao, Aitian Chen, Pei-Yuan Huang, Chen Liu, Laichuan Shen, Jiahao Liu, Le Zhao, Bin Fang, Wen-Cheng Yue, Dongxing Zheng, Ledong Wang, Hao Bai, Ka Shen, Yan Zhou, Shasha Wang, Enlong Liu, Shikun He, Yong-Lei Wang, Xixiang Zhang, Wanjun Jiang","doi":"10.1038/s41535-024-00655-1","DOIUrl":null,"url":null,"abstract":"<p>Magnetic skyrmions are topological spin textures that are regarded as promising information carriers for next-generation spintronic memory and computing devices. For practical applications, their deterministic generation, manipulation, and efficient detection are the most critical aspects. Although the generation and manipulation of skyrmions have been extensively studied, efficient electrical detection of mobile skyrmions by using techniques that are compatible with modern magnetic memory technology, remains to be adequately addressed. Here, through integrating magnetic multilayers that host nanoscale skyrmions, together with the magnetic tunnel junctions (MTJ), we demonstrate the electrical detection of skyrmions by using the tunneling magnetoresistance (TMR) effect with a TMR ratio that reaches over 100% at room temperature. By building prototype three-terminal racetrack-like devices, we further show the electrical detection of mobile skyrmions by recording the time-dependent TMR ratios. Along with many recent developments, our results could advance the development of skyrmionic memory and logic devices.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00655-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic skyrmions are topological spin textures that are regarded as promising information carriers for next-generation spintronic memory and computing devices. For practical applications, their deterministic generation, manipulation, and efficient detection are the most critical aspects. Although the generation and manipulation of skyrmions have been extensively studied, efficient electrical detection of mobile skyrmions by using techniques that are compatible with modern magnetic memory technology, remains to be adequately addressed. Here, through integrating magnetic multilayers that host nanoscale skyrmions, together with the magnetic tunnel junctions (MTJ), we demonstrate the electrical detection of skyrmions by using the tunneling magnetoresistance (TMR) effect with a TMR ratio that reaches over 100% at room temperature. By building prototype three-terminal racetrack-like devices, we further show the electrical detection of mobile skyrmions by recording the time-dependent TMR ratios. Along with many recent developments, our results could advance the development of skyrmionic memory and logic devices.

Abstract Image

在类似赛道的装置中利用 100% 隧道磁阻对移动天体进行电学检测
磁天幕是一种拓扑自旋纹理,被认为是下一代自旋电子存储器和计算设备的理想信息载体。在实际应用中,它们的确定性生成、操纵和高效检测是最关键的方面。尽管对天旋子的产生和操纵已经进行了广泛的研究,但利用与现代磁存储器技术兼容的技术对移动天旋子进行高效电学检测的问题仍有待充分解决。在这里,通过将承载纳米级天粒子的磁性多层膜与磁性隧道结(MTJ)集成在一起,我们展示了利用隧道磁阻(TMR)效应对天粒子进行电学检测的方法,室温下的 TMR 比值超过 100%。通过构建类似于赛道的三端原型器件,我们通过记录随时间变化的 TMR 比率,进一步展示了对移动天粒的电学检测。我们的研究成果与许多最新进展一起,将推动天离子存储器和逻辑器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信