RDLR: A Robust Deep Learning-Based Image Registration Method for Pediatric Retinal Images.

Hao Zhou, Wenhan Yang, Limei Sun, Li Huang, Songshan Li, Xiaoling Luo, Yili Jin, Wei Sun, Wenjia Yan, Jing Li, Xiaoyan Ding, Yao He, Zhi Xie
{"title":"RDLR: A Robust Deep Learning-Based Image Registration Method for Pediatric Retinal Images.","authors":"Hao Zhou, Wenhan Yang, Limei Sun, Li Huang, Songshan Li, Xiaoling Luo, Yili Jin, Wei Sun, Wenjia Yan, Jing Li, Xiaoyan Ding, Yao He, Zhi Xie","doi":"10.1007/s10278-024-01154-2","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal diseases stand as a primary cause of childhood blindness. Analyzing the progression of these diseases requires close attention to lesion morphology and spatial information. Standard image registration methods fail to accurately reconstruct pediatric fundus images containing significant distortion and blurring. To address this challenge, we proposed a robust deep learning-based image registration method (RDLR). The method consisted of two modules: registration module (RM) and panoramic view module (PVM). RM effectively integrated global and local feature information and learned prior information related to the orientation of images. PVM was capable of reconstructing spatial information in panoramic images. Furthermore, as the registration model was trained on over 280,000 pediatric fundus images, we introduced a registration annotation automatic generation process coupled with a quality control module to ensure the reliability of training data. We compared the performance of RDLR to the other methods, including conventional registration pipeline (CRP), voxel morph (WM), generalizable image matcher (GIM), and self-supervised techniques (SS). RDLR achieved significantly higher registration accuracy (average Dice score of 0.948) than the other methods (ranging from 0.491 to 0.802). The resulting panoramic retinal maps reconstructed by RDLR also demonstrated substantially higher fidelity (average Dice score of 0.960) compared to the other methods (ranging from 0.720 to 0.783). Overall, the proposed method addressed key challenges in pediatric retinal imaging, providing an effective solution to enhance disease diagnosis. Our source code is available at https://github.com/wuwusky/RobustDeepLeraningRegistration .</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":"3131-3145"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01154-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal diseases stand as a primary cause of childhood blindness. Analyzing the progression of these diseases requires close attention to lesion morphology and spatial information. Standard image registration methods fail to accurately reconstruct pediatric fundus images containing significant distortion and blurring. To address this challenge, we proposed a robust deep learning-based image registration method (RDLR). The method consisted of two modules: registration module (RM) and panoramic view module (PVM). RM effectively integrated global and local feature information and learned prior information related to the orientation of images. PVM was capable of reconstructing spatial information in panoramic images. Furthermore, as the registration model was trained on over 280,000 pediatric fundus images, we introduced a registration annotation automatic generation process coupled with a quality control module to ensure the reliability of training data. We compared the performance of RDLR to the other methods, including conventional registration pipeline (CRP), voxel morph (WM), generalizable image matcher (GIM), and self-supervised techniques (SS). RDLR achieved significantly higher registration accuracy (average Dice score of 0.948) than the other methods (ranging from 0.491 to 0.802). The resulting panoramic retinal maps reconstructed by RDLR also demonstrated substantially higher fidelity (average Dice score of 0.960) compared to the other methods (ranging from 0.720 to 0.783). Overall, the proposed method addressed key challenges in pediatric retinal imaging, providing an effective solution to enhance disease diagnosis. Our source code is available at https://github.com/wuwusky/RobustDeepLeraningRegistration .

Abstract Image

RDLR:基于深度学习的小儿视网膜图像稳健配准方法。
视网膜疾病是儿童失明的主要原因。分析这些疾病的进展需要密切关注病变形态和空间信息。标准的图像配准方法无法准确重建含有明显失真和模糊的儿科眼底图像。为了应对这一挑战,我们提出了一种基于深度学习的稳健图像配准方法(RDLR)。该方法由两个模块组成:配准模块(RM)和全景视图模块(PVM)。RM有效整合了全局和局部特征信息,并学习了与图像方向相关的先验信息。PVM 能够重建全景图像中的空间信息。此外,由于配准模型是在 280,000 多张儿科眼底图像上训练出来的,我们引入了配准注释自动生成流程和质量控制模块,以确保训练数据的可靠性。我们比较了 RDLR 和其他方法的性能,包括传统配准管道(CRP)、体素形态(WM)、通用图像匹配器(GIM)和自我监督技术(SS)。与其他方法(从 0.491 到 0.802 不等)相比,RDLR 的配准精度(平均 Dice 分数为 0.948)明显更高。通过 RDLR 重建的全景视网膜图的保真度(平均 Dice 得分为 0.960)也大大高于其他方法(从 0.720 到 0.783 不等)。总之,所提出的方法解决了儿科视网膜成像的关键难题,为提高疾病诊断提供了有效的解决方案。我们的源代码可在 https://github.com/wuwusky/RobustDeepLeraningRegistration 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信