Modeling Fertilization Outcome in a Changing World.

IF 2.2 3区 生物学 Q1 ZOOLOGY
Kit Yu Karen Chan, Wing Ho Ko
{"title":"Modeling Fertilization Outcome in a Changing World.","authors":"Kit Yu Karen Chan, Wing Ho Ko","doi":"10.1093/icb/icae071","DOIUrl":null,"url":null,"abstract":"<p><p>Marine organisms have complex life histories. For broadcast spawners, successful continuation of the population requires their small gametes to make contact in the water column for sufficiently long periods for fertilization to occur. Anthropogenic climate change has been shown to impact fertilization success in various marine invertebrates, including sea urchins, which are key grazers in their habitats. Gamete performance of both sexes declined when exposed to elevated temperatures and/or pCO2 levels. Examples of reduced performance included slower sperm swimming speed and thinning egg jelly coat. However, such responses to climate change stress were not uniform between individuals. Such variations could serve as the basis for selection. Fertilization kinetics have long been modeled as a particle collision process. Here, we present a modified fertilization kinetics model that incorporates individual variations in performance in a more environmentally relevant regime, and which the performance of groups with different traits can be separately tracked in a mixture. Numerical simulations highlight that fertilization outcomes are influenced by changes in gamete traits as they age in sea water and the presence of competition groups (multiple dams or sires). These results highlight the importance of considering multiple individuals and at multiple time points during in vivo assays. We also applied our model to show that interspecific variation in climate stress vulnerabilities elevates the risk of hybridization. By making a numerical model open-source, we aim to help us better understand the fate of organisms in the face of climate change by enabling the community to consider the mean and variance of the response to capture adaptive potential.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":"905-920"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Marine organisms have complex life histories. For broadcast spawners, successful continuation of the population requires their small gametes to make contact in the water column for sufficiently long periods for fertilization to occur. Anthropogenic climate change has been shown to impact fertilization success in various marine invertebrates, including sea urchins, which are key grazers in their habitats. Gamete performance of both sexes declined when exposed to elevated temperatures and/or pCO2 levels. Examples of reduced performance included slower sperm swimming speed and thinning egg jelly coat. However, such responses to climate change stress were not uniform between individuals. Such variations could serve as the basis for selection. Fertilization kinetics have long been modeled as a particle collision process. Here, we present a modified fertilization kinetics model that incorporates individual variations in performance in a more environmentally relevant regime, and which the performance of groups with different traits can be separately tracked in a mixture. Numerical simulations highlight that fertilization outcomes are influenced by changes in gamete traits as they age in sea water and the presence of competition groups (multiple dams or sires). These results highlight the importance of considering multiple individuals and at multiple time points during in vivo assays. We also applied our model to show that interspecific variation in climate stress vulnerabilities elevates the risk of hybridization. By making a numerical model open-source, we aim to help us better understand the fate of organisms in the face of climate change by enabling the community to consider the mean and variance of the response to capture adaptive potential.

在不断变化的世界中模拟受精结果。
海洋生物的生活史十分复杂。对于播散产卵者来说,要使种群成功延续,需要它们的小配子在水体中接触足够长的时间才能受精。人类活动造成的气候变化已被证明会影响各种海洋无脊椎动物的受精成功率,包括在其栖息地中作为主要食草动物的海胆。当暴露于升高的温度和/或 pCO2 水平时,雌雄配子的性能都会下降。性能下降的例子包括精子游动速度减慢和卵子胶衣变薄。然而,不同个体对气候变化压力的反应并不一致。这种差异可以作为选择的基础。长期以来,受精动力学一直被模拟为粒子碰撞过程。在这里,我们提出了一个改进的受精动力学模型,该模型将个体的表现差异纳入了一个与环境更相关的机制中,而且具有不同性状的群体的表现可以在混合物中分别跟踪。数值模拟结果表明,受精结果受配子在海水中老化过程中性状变化以及竞争群体(多个母本或父本)存在的影响。这些结果凸显了在体内试验中考虑多个个体和多个时间点的重要性。我们还应用我们的模型表明,气候压力脆弱性的种间差异会提高杂交风险。通过将数值模型开源,我们旨在帮助我们更好地理解生物在气候变化面前的命运,使社区能够考虑反应的均值和方差,以捕捉适应潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信