On the connections between the spatial Lambda–Fleming–Viot model and other processes for analysing geo-referenced genetic data

IF 1.2 4区 生物学 Q4 ECOLOGY
Johannes Wirtz, Stéphane Guindon
{"title":"On the connections between the spatial Lambda–Fleming–Viot model and other processes for analysing geo-referenced genetic data","authors":"Johannes Wirtz,&nbsp;Stéphane Guindon","doi":"10.1016/j.tpb.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of the spatial Lambda-Fleming–Viot model (<span><math><mi>Λ</mi></math></span>V) in population genetics was mainly driven by the pioneering work of Alison Etheridge, in collaboration with Nick Barton and Amandine Véber about ten years ago (Barton et al., 2010; Barton et al., 2013). The <span><math><mi>Λ</mi></math></span>V model provides a sound mathematical framework for describing the evolution of a population of related individuals along a spatial continuum. It alleviates the “pain in the torus” issue with Wright and Malécot’s isolation by distance model and is sampling consistent, making it a tool of choice for statistical inference. Yet, little is known about the potential connections between the <span><math><mi>Λ</mi></math></span>V and other stochastic processes generating trees and the spatial coordinates along the corresponding lineages. This work focuses on a version of the <span><math><mi>Λ</mi></math></span>V whereby lineages move rapidly over small distances. Using simulations, we show that the induced <span><math><mi>Λ</mi></math></span>V tree-generating process is well approximated by a birth–death model. Our results also indicate that Brownian motions modelling the movements of lines of descent along birth–death trees do not generally provide a good approximation of the <span><math><mi>Λ</mi></math></span>V due to habitat boundaries effects that play an increasingly important role in the long run. Accounting for habitat boundaries through reflected Brownian motions considerably increases the similarity to the <span><math><mi>Λ</mi></math></span>V model however. Finally, we describe efficient algorithms for fast simulation of the backward and forward in time versions of the <span><math><mi>Λ</mi></math></span>V model.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 139-149"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000625/pdfft?md5=ee7a75c55ad9b2bf9efb8f20c6348b32&pid=1-s2.0-S0040580924000625-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000625","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of the spatial Lambda-Fleming–Viot model (ΛV) in population genetics was mainly driven by the pioneering work of Alison Etheridge, in collaboration with Nick Barton and Amandine Véber about ten years ago (Barton et al., 2010; Barton et al., 2013). The ΛV model provides a sound mathematical framework for describing the evolution of a population of related individuals along a spatial continuum. It alleviates the “pain in the torus” issue with Wright and Malécot’s isolation by distance model and is sampling consistent, making it a tool of choice for statistical inference. Yet, little is known about the potential connections between the ΛV and other stochastic processes generating trees and the spatial coordinates along the corresponding lineages. This work focuses on a version of the ΛV whereby lineages move rapidly over small distances. Using simulations, we show that the induced ΛV tree-generating process is well approximated by a birth–death model. Our results also indicate that Brownian motions modelling the movements of lines of descent along birth–death trees do not generally provide a good approximation of the ΛV due to habitat boundaries effects that play an increasingly important role in the long run. Accounting for habitat boundaries through reflected Brownian motions considerably increases the similarity to the ΛV model however. Finally, we describe efficient algorithms for fast simulation of the backward and forward in time versions of the ΛV model.

空间 Lambda-Fleming-Viot 模型与分析地理参照遗传数据的其他过程之间的联系。
在群体遗传学中引入空间兰姆达-弗莱明-维奥特模型(ΛV)主要是由艾莉森-埃瑟里奇(Alison Etheridge)与尼克-巴顿(Nick Barton)和阿曼丁-韦伯(Amandine Véber)在十年前合作开展的开创性工作推动的(巴顿等人,2010;巴顿等人,2013)。ΛV模型提供了一个合理的数学框架,用于描述由相关个体组成的种群沿着空间连续体的演化过程。它缓解了 Wright 和 Malécot 的距离隔离模型所带来的 "环中之痛 "问题,并且具有采样一致性,是统计推断的首选工具。然而,人们对ΛV 和其他产生树的随机过程与相应世系的空间坐标之间的潜在联系知之甚少。这项研究的重点是ΛV的一个版本,在这个版本中,树系在小范围内快速移动。通过模拟,我们发现诱导的ΛV 树生成过程很好地近似于出生-死亡模型。我们的结果还表明,由于栖息地边界效应在长期内发挥着越来越重要的作用,以布朗运动模拟沿出生-死亡树的世系移动一般不能很好地近似ΛV。然而,通过反射布朗运动对栖息地边界的考虑大大增加了与ΛV模型的相似性。最后,我们介绍了快速模拟 ΛV 模型后向和前向时间版本的有效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信