Jeffrey L Woodhead, Yeshi Gebremichael, Joyce Macwan, Irfan A Qureshi, Richard Bertz, Victoria Wirtz, Brett A Howell
{"title":"Prediction of the liver safety profile of a first-in-class myeloperoxidase inhibitor using quantitative systems toxicology modeling.","authors":"Jeffrey L Woodhead, Yeshi Gebremichael, Joyce Macwan, Irfan A Qureshi, Richard Bertz, Victoria Wirtz, Brett A Howell","doi":"10.1080/00498254.2024.2361027","DOIUrl":null,"url":null,"abstract":"<p><p>The novel myeloperoxidase inhibitor verdiperstat was developed as a treatment for neuroinflammatory and neurodegenerative diseases. During development, a computational prediction of verdiperstat liver safety was performed using DILIsym v8A, a quantitative systems toxicology (QST) model of liver safety.A physiologically-based pharmacokinetic (PBPK) model of verdiperstat was constructed in GastroPlus 9.8, and outputs for liver and plasma time courses of verdiperstat were input into DILIsym. <i>In vitro</i> experiments measured the likelihood that verdiperstat would inhibit mitochondrial function, inhibit bile acid transporters, and generate reactive oxygen species (ROS); these results were used as inputs into DILIsym, with two alternate sets of parameters used in order to fully explore the sensitivity of model predictions. Verdiperstat dosing protocols up to 600 mg BID were simulated for up to 48 weeks using a simulated population (SimPops) in DILIsym.Verdiperstat was predicted to be safe, with only very rare, mild liver enzyme increases as a potential possibility in highly sensitive individuals. Subsequent Phase 3 clinical trials found that ALT elevations in the verdiperstat treatment group were generally similar to those in the placebo group. This validates the DILIsym simulation results and demonstrates the power of QST modelling to predict the liver safety profile of novel therapeutics.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"401-410"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2361027","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The novel myeloperoxidase inhibitor verdiperstat was developed as a treatment for neuroinflammatory and neurodegenerative diseases. During development, a computational prediction of verdiperstat liver safety was performed using DILIsym v8A, a quantitative systems toxicology (QST) model of liver safety.A physiologically-based pharmacokinetic (PBPK) model of verdiperstat was constructed in GastroPlus 9.8, and outputs for liver and plasma time courses of verdiperstat were input into DILIsym. In vitro experiments measured the likelihood that verdiperstat would inhibit mitochondrial function, inhibit bile acid transporters, and generate reactive oxygen species (ROS); these results were used as inputs into DILIsym, with two alternate sets of parameters used in order to fully explore the sensitivity of model predictions. Verdiperstat dosing protocols up to 600 mg BID were simulated for up to 48 weeks using a simulated population (SimPops) in DILIsym.Verdiperstat was predicted to be safe, with only very rare, mild liver enzyme increases as a potential possibility in highly sensitive individuals. Subsequent Phase 3 clinical trials found that ALT elevations in the verdiperstat treatment group were generally similar to those in the placebo group. This validates the DILIsym simulation results and demonstrates the power of QST modelling to predict the liver safety profile of novel therapeutics.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology