A new multi-resolution bathymetric dataset of the Gulf of Naples (Italy) from complementary multi-beam echosounders

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, Fabio Trincardi
{"title":"A new multi-resolution bathymetric dataset of the Gulf of Naples (Italy) from complementary multi-beam echosounders","authors":"Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, Fabio Trincardi","doi":"10.5194/essd-2024-135","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> High-resolution bathymetry provides critical information to marine geoscientists. Bathymetric big data help characterise the seafloor and its benthic habitats, understand sedimentary records, and support the development of offshore engineering infrastructures. From September 27<sup>th</sup> to October 20<sup>th</sup>, 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to more than 2000 m water depth, acquiring about 5000 km<sup>2</sup> of multi beam echosounder data. This area is particularly vulnerable to abrupt changes driven by the dynamics of several volcanic complexes, active in the area, and by human-induced impacts reflecting the proximity to the highly populated and touristic coastal area of Naples and nearby famous islands. For these reasons, the seafloor of the area needs to be known and constantly monitored. The digital bathymetric data previously available are restricted to the shallow highly dynamic area of the Gulf of Naples and appear fragmented as they were acquired in successive years, with different goals thereby using a variety of devices, with markedly different spatial resolutions. In this paper, we present bathymetric maps of the Gulf of Naples and adjacent slope basins at unprecedented resolution using three state-of-the-art multi beam echosounders. These high-resolution data highlight the technological advances of geophysical surveys achieved over the last 20 years and contribute to assessing the most dynamic areas where changes in the seafloor over time can be quantified. The new digital multi-resolution bathymetric products are openly accessible via Marine Geosciences Data System MGDS (refer to section Data Availability, Table 8, for datasets and products DOIs), perfectly matching the FAIR (Findable, Accessible, Interoperable and Reusable) and Open Science Principles.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"38 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-135","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. High-resolution bathymetry provides critical information to marine geoscientists. Bathymetric big data help characterise the seafloor and its benthic habitats, understand sedimentary records, and support the development of offshore engineering infrastructures. From September 27th to October 20th, 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to more than 2000 m water depth, acquiring about 5000 km2 of multi beam echosounder data. This area is particularly vulnerable to abrupt changes driven by the dynamics of several volcanic complexes, active in the area, and by human-induced impacts reflecting the proximity to the highly populated and touristic coastal area of Naples and nearby famous islands. For these reasons, the seafloor of the area needs to be known and constantly monitored. The digital bathymetric data previously available are restricted to the shallow highly dynamic area of the Gulf of Naples and appear fragmented as they were acquired in successive years, with different goals thereby using a variety of devices, with markedly different spatial resolutions. In this paper, we present bathymetric maps of the Gulf of Naples and adjacent slope basins at unprecedented resolution using three state-of-the-art multi beam echosounders. These high-resolution data highlight the technological advances of geophysical surveys achieved over the last 20 years and contribute to assessing the most dynamic areas where changes in the seafloor over time can be quantified. The new digital multi-resolution bathymetric products are openly accessible via Marine Geosciences Data System MGDS (refer to section Data Availability, Table 8, for datasets and products DOIs), perfectly matching the FAIR (Findable, Accessible, Interoperable and Reusable) and Open Science Principles.
那不勒斯湾(意大利)新的多分辨率测深数据集(来自互补多波束回声测深仪
摘要。高分辨率测深为海洋地球科学家提供了关键信息。测深大数据有助于描述海底及其底栖生物栖息地的特征、了解沉积记录并支持近海工程基础设施的开发。2022 年 9 月 27 日至 10 月 20 日,新的 CNR 研究船 GAIA BLU 号探索了那不勒斯湾、波祖利湾和阿马尔菲沿海地区(意大利第勒尼安海)水深 50 米至 2000 多米的海底,获取了约 5000 平方公里的多波束回声测深仪数据。这一地区特别容易受到该地区活跃的几个火山群的动态变化和人类活动的影响而发生突变,这反映了该地区毗邻那不勒斯人口密集的旅游沿海地区和附近著名的岛屿。因此,需要了解并持续监测该地区的海底情况。以前可用的数字测深数据仅限于那不勒斯湾的浅海高动态区域,而且显得支离破碎,因为这些数据是在连续几年中获得的,目标各不相同,因此使用了各种设备,空间分辨率也明显不同。在本文中,我们使用三台最先进的多波束回声测深仪,以前所未有的分辨率绘制了那不勒斯湾及邻近斜坡盆地的测深图。这些高分辨率数据彰显了过去 20 年地球物理勘测技术的进步,有助于评估最具活力的区域,在这些区域可以量化海底随时间发生的变化。新的数字多分辨率测深产品可通过海洋地球科学数据系统 MGDS 公开获取(数据集和产品 DOI 参见表 8 "数据可用性 "部分),完全符合 FAIR(可查找、可获取、可互操作和可重用)和开放科学原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信