A high order predictor-corrector method with non-uniform meshes for fractional differential equations

IF 2.5 2区 数学 Q1 MATHEMATICS
Farzaneh Mokhtarnezhadazar
{"title":"A high order predictor-corrector method with non-uniform meshes for fractional differential equations","authors":"Farzaneh Mokhtarnezhadazar","doi":"10.1007/s13540-024-00303-2","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a predictor-corrector scheme for solving the fractional differential equations <span>\\({}_0^C D_t^\\alpha y(t) = f(t,y(t)), \\alpha &gt;0\\)</span> with non-uniform meshes. We reduce the fractional differential equation into the Volterra integral equation. Detailed error analysis and stability analysis are investigated. The convergent order of this method on non-uniform meshes is still 3 though <span>\\({}_0^C D_t^\\alpha y(t)\\)</span> is not smooth at <span>\\(t=0\\)</span>. Numerical examples are carried out to verify the theoretical analysis.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00303-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a predictor-corrector scheme for solving the fractional differential equations \({}_0^C D_t^\alpha y(t) = f(t,y(t)), \alpha >0\) with non-uniform meshes. We reduce the fractional differential equation into the Volterra integral equation. Detailed error analysis and stability analysis are investigated. The convergent order of this method on non-uniform meshes is still 3 though \({}_0^C D_t^\alpha y(t)\) is not smooth at \(t=0\). Numerical examples are carried out to verify the theoretical analysis.

分数微分方程的非均匀网格高阶预测器-校正器方法
本文提出了一种预测器-校正器方案,用于求解非均匀网格的分数微分方程 \({}_0^C D_t^\alpha y(t) = f(t,y(t)), \alpha >0\)。我们将分数微分方程简化为 Volterra 积分方程。研究了详细的误差分析和稳定性分析。虽然 \({}_0^C D_t^\alpha y(t)\) 在 \(t=0\) 时并不平滑,但该方法在非均匀网格上的收敛阶数仍为 3。为了验证理论分析,我们进行了数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信