Extracting roads from satellite images via enhancing road feature investigation in learning

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Shiming Feng, Fei Hou, Jialu Chen, Wencheng Wang
{"title":"Extracting roads from satellite images via enhancing road feature investigation in learning","authors":"Shiming Feng,&nbsp;Fei Hou,&nbsp;Jialu Chen,&nbsp;Wencheng Wang","doi":"10.1002/cav.2275","DOIUrl":null,"url":null,"abstract":"<p>It is a hot topic to extract road maps from satellite images. However, it is still very challenging with existing methods to achieve high-quality results, because the regions covered by satellite images are very large and the roads are slender, complex and only take up a small part of a satellite image, making it difficult to distinguish roads from the background in satellite images. In this article, we address this challenge by presenting two modules to more effectively learn road features, and so improving road extraction. The first module exploits the differences between the patches containing roads and the patches containing no road to exclude the background regions as many as possible, by which the small part containing roads can be more specifically investigated for improvement. The second module enhances feature alignment in decoding feature maps by using strip convolution in combination with the attention mechanism. These two modules can be easily integrated into the networks of existing learning methods for improvement. Experimental results show that our modules can help existing methods to achieve high-quality results, superior to the state-of-the-art methods.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2275","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

It is a hot topic to extract road maps from satellite images. However, it is still very challenging with existing methods to achieve high-quality results, because the regions covered by satellite images are very large and the roads are slender, complex and only take up a small part of a satellite image, making it difficult to distinguish roads from the background in satellite images. In this article, we address this challenge by presenting two modules to more effectively learn road features, and so improving road extraction. The first module exploits the differences between the patches containing roads and the patches containing no road to exclude the background regions as many as possible, by which the small part containing roads can be more specifically investigated for improvement. The second module enhances feature alignment in decoding feature maps by using strip convolution in combination with the attention mechanism. These two modules can be easily integrated into the networks of existing learning methods for improvement. Experimental results show that our modules can help existing methods to achieve high-quality results, superior to the state-of-the-art methods.

在学习中通过加强道路特征调查从卫星图像中提取道路
从卫星图像中提取道路地图是一个热门话题。然而,由于卫星图像覆盖的区域非常大,而道路细长、复杂,且只占卫星图像的一小部分,因此在卫星图像中很难将道路与背景区分开来,因此现有的方法要实现高质量的结果仍然非常具有挑战性。本文针对这一难题提出了两个模块,以更有效地学习道路特征,从而改进道路提取。第一个模块利用含有道路的斑块与不含道路的斑块之间的差异,尽可能多地排除背景区域,从而更有针对性地研究含有道路的小部分区域,以改进道路提取。第二个模块通过条带卷积与注意力机制相结合,在解码特征图时加强特征对齐。这两个模块可以很容易地集成到现有学习方法的网络中进行改进。实验结果表明,我们的模块可以帮助现有方法获得高质量的结果,优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Animation and Virtual Worlds
Computer Animation and Virtual Worlds 工程技术-计算机:软件工程
CiteScore
2.20
自引率
0.00%
发文量
90
审稿时长
6-12 weeks
期刊介绍: With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信