{"title":"VistaRAG: Toward Safe and Trustworthy Autonomous Driving Through Retrieval-Augmented Generation","authors":"Xingyuan Dai;Chao Guo;Yun Tang;Haichuan Li;Yutong Wang;Jun Huang;Yonglin Tian;Xin Xia;Yisheng Lv;Fei-Yue Wang","doi":"10.1109/TIV.2024.3396450","DOIUrl":null,"url":null,"abstract":"Autonomous driving based on foundation models has recently garnered widespread attention. However, the risk of hallucinations inherent in foundation models could compromise the safety and reliability of autonomous driving systems. This letter, as part of a series of reports from the Distributed/Decentralized Hybrid Workshop on Foundation/Infrastructure Intelligence (DHW-FII), aims to tackle these issues. We introduce VistaRAG, which integrates retrieval-augmented generation (RAG) technologies into autonomous driving systems based on foundation models, to address the inherent reliability challenges in decision-making. VistaRAG employs a dynamic retrieval mechanism to access highly relevant driving experience, real-time road network status, and other contextual information from external databases. This aids foundation models in informed reasoning and decision-making, thereby enhancing the safety and trustworthiness of foundation-model-based autonomous driving systems under complex traffic scenarios.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 4","pages":"4579-4582"},"PeriodicalIF":14.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10518077/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous driving based on foundation models has recently garnered widespread attention. However, the risk of hallucinations inherent in foundation models could compromise the safety and reliability of autonomous driving systems. This letter, as part of a series of reports from the Distributed/Decentralized Hybrid Workshop on Foundation/Infrastructure Intelligence (DHW-FII), aims to tackle these issues. We introduce VistaRAG, which integrates retrieval-augmented generation (RAG) technologies into autonomous driving systems based on foundation models, to address the inherent reliability challenges in decision-making. VistaRAG employs a dynamic retrieval mechanism to access highly relevant driving experience, real-time road network status, and other contextual information from external databases. This aids foundation models in informed reasoning and decision-making, thereby enhancing the safety and trustworthiness of foundation-model-based autonomous driving systems under complex traffic scenarios.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.