{"title":"Sora for Hierarchical Parallel Motion Planner: A Safe End-to-End Method Against OOD Events","authors":"Siyu Teng;Ran Yan;Xiaotong Zhang;Yuchen Li;Xingxia Wang;Yutong Wang;Yonglin Tian;Hui Yu;Lingxi Li;Long Chen;Fei-Yue Wang","doi":"10.1109/TIV.2024.3392647","DOIUrl":null,"url":null,"abstract":"End-to-end motion planners have shown great potential for enabling fully autonomous driving. However, when facing out-of-distribution (OOD) events, these planners might not guarantee the optimal prediction of control commands. To better enhance safety, an end-to-end method that benefits robust and general policy learning from potential OOD events is urgently desirable. In this perspective, Sore4PMP, a hierarchical parallel motion planner, is presented as a suitable solution. Based on raw perception data and descriptive prompts, Sore4PMP can first leverage the advanced generative capabilities of Sora to generate virtual OOD events, and then integrate these events into the decision-making process, thereby enhancing the robustness and generalization of autonomous vehicles (AVs) in emergency scenarios. With a comprehensive outlook, this perspective aims to provide a potential direction for the development of foundation models coupled with autonomous driving and finally promote the safety, efficiency, reliability, and sustainability of AVs.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 4","pages":"4573-4576"},"PeriodicalIF":14.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10517427/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
End-to-end motion planners have shown great potential for enabling fully autonomous driving. However, when facing out-of-distribution (OOD) events, these planners might not guarantee the optimal prediction of control commands. To better enhance safety, an end-to-end method that benefits robust and general policy learning from potential OOD events is urgently desirable. In this perspective, Sore4PMP, a hierarchical parallel motion planner, is presented as a suitable solution. Based on raw perception data and descriptive prompts, Sore4PMP can first leverage the advanced generative capabilities of Sora to generate virtual OOD events, and then integrate these events into the decision-making process, thereby enhancing the robustness and generalization of autonomous vehicles (AVs) in emergency scenarios. With a comprehensive outlook, this perspective aims to provide a potential direction for the development of foundation models coupled with autonomous driving and finally promote the safety, efficiency, reliability, and sustainability of AVs.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.