Diana C. Fechner , RamónA. Martinez , Melisa J. Hidalgo , Adriano Araújo Gomes , Roberto G. Pellerano , Héctor C. Goicoechea
{"title":"Geographic authentication of argentinian teas by combining one-class models and discriminant methods for modeling near infrared spectra","authors":"Diana C. Fechner , RamónA. Martinez , Melisa J. Hidalgo , Adriano Araújo Gomes , Roberto G. Pellerano , Héctor C. Goicoechea","doi":"10.1016/j.chemolab.2024.105156","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, 110 tea samples from South American countries (Argentina, Brazil, and Paraguay) and Asian countries (India and China) were analyzed using near-infrared spectroscopy (NIRS) together with a two-step chemometric authentication strategy (class modeling techniques and discriminant analysis) to authenticate commercial teas from Argentina. In the first step, one-class models were built and validated to authenticate South American teas using preprocessed NIRS data. For this purpose, data-driven soft independent modeling of class analogy (DD-SIMCA) and one-class partial least squares (OC-PLS) were used. The DD-SIMCA model gave the best results, with a sensitivity of 93.10%, specificity of 100%, and efficiency of 95.00%. In the second step, a support vector machine (SVM) was used to build and validate a multiclass model to discriminate between tea samples from Argentina and neighboring countries of South America. The best model was the combination of nine variables selected by the fast correlation-based filter (FCBF) method, with an accuracy of 98.30%. Therefore, we conclude that the combination of NIRS and two-step chemometric tools can be used to authenticate the geographical origin of samples with high inter-class similarity.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"251 ","pages":"Article 105156"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000960","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, 110 tea samples from South American countries (Argentina, Brazil, and Paraguay) and Asian countries (India and China) were analyzed using near-infrared spectroscopy (NIRS) together with a two-step chemometric authentication strategy (class modeling techniques and discriminant analysis) to authenticate commercial teas from Argentina. In the first step, one-class models were built and validated to authenticate South American teas using preprocessed NIRS data. For this purpose, data-driven soft independent modeling of class analogy (DD-SIMCA) and one-class partial least squares (OC-PLS) were used. The DD-SIMCA model gave the best results, with a sensitivity of 93.10%, specificity of 100%, and efficiency of 95.00%. In the second step, a support vector machine (SVM) was used to build and validate a multiclass model to discriminate between tea samples from Argentina and neighboring countries of South America. The best model was the combination of nine variables selected by the fast correlation-based filter (FCBF) method, with an accuracy of 98.30%. Therefore, we conclude that the combination of NIRS and two-step chemometric tools can be used to authenticate the geographical origin of samples with high inter-class similarity.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.