Isogeometric Topology Optimization of Multi-patch Shell Structures

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiong Pan , Xiaoya Zhai , Hongmei Kang , Xiaoxiao Du , Falai Chen
{"title":"Isogeometric Topology Optimization of Multi-patch Shell Structures","authors":"Qiong Pan ,&nbsp;Xiaoya Zhai ,&nbsp;Hongmei Kang ,&nbsp;Xiaoxiao Du ,&nbsp;Falai Chen","doi":"10.1016/j.cad.2024.103733","DOIUrl":null,"url":null,"abstract":"<div><p>Shell structures refer to structural elements that derive strength and load-bearing capacity from their thin and curved geometry. In practical applications, shell structures are commonly composed of multiple patches to represent intricate and diverse architectural configurations faithfully. Nevertheless, the design of multi-patch shell structures holds considerable promise. However, most of the previous work is devoted to the numerical analysis of multi-patch shell structures without further optimization design. The work proposes an inverse design framework, specifically focusing on multi-patch configurations based on Reissner–Mindlin theory. First, reparameterization and global refinement operations are employed on the provided multi-patch shell structures. Renumbering the indices of control points with shared degrees of freedom at the interface naturally ensures <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-<strong>continuity</strong> between patches. Subsequently, this study investigates the amalgamation of Isogeometric Analysis (IGA) and the Solid Isotropic Material with Penalization (SIMP) method for topology optimization of shell structures. The proposed approach is validated through numerical examples, emphasizing its capacity to enhance multi-patch shell structure design, showcasing robustness and efficiency.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000605","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Shell structures refer to structural elements that derive strength and load-bearing capacity from their thin and curved geometry. In practical applications, shell structures are commonly composed of multiple patches to represent intricate and diverse architectural configurations faithfully. Nevertheless, the design of multi-patch shell structures holds considerable promise. However, most of the previous work is devoted to the numerical analysis of multi-patch shell structures without further optimization design. The work proposes an inverse design framework, specifically focusing on multi-patch configurations based on Reissner–Mindlin theory. First, reparameterization and global refinement operations are employed on the provided multi-patch shell structures. Renumbering the indices of control points with shared degrees of freedom at the interface naturally ensures C0-continuity between patches. Subsequently, this study investigates the amalgamation of Isogeometric Analysis (IGA) and the Solid Isotropic Material with Penalization (SIMP) method for topology optimization of shell structures. The proposed approach is validated through numerical examples, emphasizing its capacity to enhance multi-patch shell structure design, showcasing robustness and efficiency.

多块壳体结构的等距拓扑优化
壳体结构指的是结构元件,其强度和承载能力来自于其薄而弯曲的几何形状。在实际应用中,壳体结构通常由多个补片组成,以忠实再现复杂多样的建筑结构。尽管如此,多补丁壳体结构的设计仍大有可为。然而,以往的工作大多致力于多补丁壳体结构的数值分析,而没有进一步的优化设计。本研究以 Reissner-Mindlin 理论为基础,提出了一种反向设计框架,特别关注多补丁结构。首先,对所提供的多补丁壳结构进行重新参数化和全局细化操作。对界面上具有共享自由度的控制点进行重新编号,自然而然地确保了补丁之间的 C0 连续性。随后,本研究探讨了等距分析法(IGA)和各向同性固体材料加惩罚法(SIMP)在壳结构拓扑优化中的结合。通过数值实例对所提出的方法进行了验证,强调了该方法在增强多补丁壳体结构设计方面的能力,并展示了其稳健性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信